
IBM
®

DB2 Universal Database
™

Data Recovery and High Availability
Guide and Reference

Version 8

SC09-4831-00

���

IBM
®

DB2 Universal Database
™

Data Recovery and High Availability
Guide and Reference

Version 8

SC09-4831-00

���

Before using this information and the product it supports, be sure to read the general information under Notices.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
www.ibm.com/planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About This Book vii
Who Should Use this Book vii
How this Book is Structured vii

Part 1. Data Recovery. 1

Chapter 1. Developing a Good Backup and
Recovery Strategy 3
Developing a Backup and Recovery Strategy . 3
Deciding How Often to Back Up 7
Storage Considerations 9
Keeping Related Data Together 10
Using Different Operating Systems 10
Crash Recovery 11
Crash Recovery - Details 12

Recovering Damaged Table Spaces . . . 12
Reducing the Impact of Media Failure . . 14
Reducing the Impact of Transaction Failure 16
Recovering from Transaction Failures in a
Partitioned Database Environment . . . 16
Recovering from the Failure of a Database
Partition Server 20
Recovering Indoubt Transactions on the
Host when DB2 Connect Has the DB2
Syncpoint Manager Configured 21
Recovering Indoubt Transactions on the
Host when DB2 Connect Does Not Use the
DB2 Syncpoint Manager 22

Disaster Recovery 23
Version Recovery 24
Rollforward Recovery 25
Incremental Backup and Recovery 28
Incremental Backup and Recovery - Details 30

Restoring from Incremental Backup Images 30
Limitations to Automatic Incremental
Restore. 32

Understanding Recovery Logs 34
Recovery Log Details 37

Log Mirroring 37
Reducing Logging with the NOT LOGGED
INITIALLY Parameter 38
Configuration Parameters for Database
Logging 39
Managing Log Files 45

Managing Log Files with a User Exit
Program 47
Log File Allocation and Removal 49
Blocking Transactions When the Log
Directory File is Full 50
On Demand Log Archive 51
Using Raw Logs 51
How to Prevent Losing Log Files 53

Understanding the Recovery History File . . 54
Recovery History File - Garbage Collection. . 56

Garbage Collection. 56
Understanding Table Space States 59
Enhancing Recovery Performance 60
Enhancing Recovery Performance - Parallel
Recovery 61

Parallel Recovery 61

Chapter 2. Database Backup 63
Backup Overview 63

Displaying Backup Information 66
Privileges, Authorities, and Authorization
Required to Use Backup 66
Using Backup 67
Backing Up to Tape 69
Backing Up to Named Pipes 71
BACKUP DATABASE 72
db2Backup - Backup database 77
Backup Sessions - CLP Examples 84
Optimizing Backup Performance 85

Chapter 3. Database Restore. 87
Restore Overview 87

Optimizing Restore Performance 88
Privileges, Authorities, and Authorization
Required to Use Restore 88
Using Restore 89
Using Incremental Restore in a Test and
Production Environment 90
Redefining Table Space Containers During a
Restore Operation (Redirected Restore) . . . 93
Restoring to an Existing Database 94
Restoring to a New Database 95
RESTORE DATABASE 95
db2Restore - Restore database. 104
Restore Sessions - CLP Examples. 115

© Copyright IBM Corp. 2001, 2002 iii

Chapter 4. Rollforward Recovery 119
Rollforward Overview 119
Privileges, Authorities, and Authorization
Required to Use Rollforward 121
Using Rollforward 121
Rolling Forward Changes in a Table Space 123
Recovering a Dropped Table 128
Using the Load Copy Location File 130
Synchronizing Clocks in a Partitioned
Database System 132
Client/Server Timestamp Conversion . . . 134
ROLLFORWARD DATABASE. 134
db2Rollforward - Rollforward Database . . 145
Rollforward Sessions - CLP Examples . . . 157

Part 2. High Availability 161

Chapter 5. Introducing High Availability
and Failover Support 163
High Availability 163
High Availability through Log Shipping . . 166
High Availability through Online Split
Mirror and Suspended I/O Support . . . 167
Online Split Mirror Handling 168

Making a Clone Database 168
Using a Split Mirror as a Standby
Database 169
Using a Split Mirror as a Backup Image 170

Fault Monitor Facility for UNIX Based
Systems 171
db2fm - DB2 Fault Monitor 173

Chapter 6. High Availability on AIX . . . 177

Chapter 7. High Availability on the
Windows Operating System 183

Chapter 8. High Availability in the Solaris
Operating Environment 189
High Availability in the Solaris Operating
Environment 189
High Availability on Sun Cluster 3.0 . . . 192
High Availability with VERITAS Cluster
Server. 195

Part 3. Appendixes 201

Appendix A. How to Read the Syntax
Diagrams 203

Appendix B. Warning, Error and
Completion Messages. 207

Appendix C. Additional DB2 Commands 209
System Commands 209

db2adutl - Work with TSM Archived
Images 209
db2ckbkp - Check Backup 213
db2ckrst - Check Incremental Restore
Image Sequence 216
db2flsn - Find Log Sequence Number . . 218
db2inidb - Initialize a Mirrored Database 220
db2mscs - Set up Windows Failover
Utility. 221

CLP Commands 225
ARCHIVE LOG 225
INITIALIZE TAPE 227
LIST HISTORY. 228
PRUNE HISTORY/LOGFILE 231
REWIND TAPE 232
SET TAPE POSITION 233
UPDATE HISTORY FILE 234

Appendix D. Additional APIs and
Associated Data Structures. 237
db2ArchiveLog - Archive Active Log API 238
db2HistoryCloseScan - Close History File
Scan 241
db2HistoryGetEntry - Get Next History File
Entry 242
db2HistoryOpenScan - Open History File
Scan 245
db2HistoryUpdate - Update History File . . 250
db2Prune - Prune History File 253
db2ReadLogNoConn - Read Log Without a
Database Connection. 256
db2ReadLogNoConnInit - Initialize Read
Log Without a Database Connection . . . 260
db2ReadLogNoConnTerm - Terminate Read
Log Without a Database Connection . . . 262
db2ReadLog - Asynchronous Read Log . . 263
db2HistData 267
SQLU-LSN 273

Appendix E. Recovery Sample Program 275
Sample Program with Embedded SQL
(dbrecov.sqc) 275

Appendix F. Tivoli Storage Manager . . . 319
Configuring a Tivoli Storage Manager Client 319

iv Data Recovery and High Availability Guide and Reference

Considerations for Using Tivoli Storage
Manager 320

Appendix G. User Exit for Database
Recovery 323
Sample User Exit Programs 323
Calling Format. 324
Error Handling 325

Appendix H. Backup and Restore APIs for
Vendor Products 327
Backup and Restore APIs for Vendor
Products 327

Operational Overview 327
Operational Hints and Tips 333
Invoking a Backup or a Restore Operation
Using Vendor Products 334

sqluvint - Initialize and Link to Device. . . 336
sqluvget - Reading Data from Device . . . 339
sqluvput - Writing Data to Device 341
sqluvend - Unlink the Device and Release its
Resources 343
sqluvdel - Delete Committed Session . . . 346
DB2-INFO 347
VENDOR-INFO 350
INIT-INPUT 351
INIT-OUTPUT 353
DATA. 353
RETURN-CODE 354

Appendix I. DB2 Universal Database
technical information 357
Overview of DB2 Universal Database
technical information 357

Categories of DB2 technical information 357

Printing DB2 books from PDF files 365
Ordering printed DB2 books 366
Accessing online help 366
Finding topics by accessing the DB2
Information Center from a browser 368
Finding product information by accessing
the DB2 Information Center from the
administration tools 370
Viewing technical documentation online
directly from the DB2 HTML Documentation
CD. 371
Updating the HTML documentation installed
on your machine 372
Copying files from the DB2 HTML
Documentation CD to a Web Server. . . . 374
Troubleshooting DB2 documentation search
with Netscape 4.x 374
Searching the DB2 documentation 375
Online DB2 troubleshooting information . . 376
Accessibility 377

Keyboard Input and Navigation 377
Accessible Display 378
Alternative Alert Cues 378
Compatibility with Assistive Technologies 378
Accessible Documentation 378

DB2 tutorials 378
DB2 Information Center for topics 379

Appendix J. Notices 381
Trademarks 384

Index 387

Contacting IBM 391
Product information 391

Contents v

vi Data Recovery and High Availability Guide and Reference

About This Book

This book provides detailed information about, and shows you how to use,
the IBM DB2 Universal Database (UDB) backup, restore, and recovery utilities.
The book also explains the importance of high availability, and describes DB2
failover support on several platforms.

Who Should Use this Book

This manual is for database administrators, application programmers, and
other DB2 UDB users who are responsible for, or who want to understand,
backup, restore, and recovery operations on DB2 database systems.

It is assumed that you are familiar with DB2 Universal Database, Structured
Query Language (SQL), and with the operating system environment in which
DB2 UDB is running. This manual does not contain instructions for installing
DB2, which depend on your operating system.

How this Book is Structured

The following topics are covered:

Data Recovery

Chapter 1, “Developing a Good Backup and Recovery Strategy”
Discusses factors to consider when choosing database and table space
recovery methods, including backing up and restoring a database or
table space, and using rollforward recovery.

Chapter 1, “Developing a Good Backup and Recovery Strategy”
Describes the DB2 backup utility, used to create backup copies of a
database or table spaces.

Chapter 3, “Database Restore”
Describes the DB2 restore utility, used to rebuild damaged or
corrupted databases or table spaces that were previously backed up.

Chapter 4, “Rollforward Recovery”
Describes the DB2 rollforward utility, used to recover a database by
applying transactions that were recorded in the database recovery log
files.

High Availability

© Copyright IBM Corp. 2001, 2002 vii

Chapter 5, “Introducing High Availability and Failover Support”
Presents an overview of the high availability failover support that is
provided by DB2.

Chapter 6, “High Availability on AIX”
Discusses DB2 support for high availability failover recovery on AIX,
which is currently implemented through the Enhanced Scalability (ES)
feature of High Availability Cluster Multi-processing (HACMP) for
AIX.

Chapter 7, “High Availability on the Windows Operating System”
Discusses DB2 support for high availability failover recovery on
Windows operating systems which is currently implemented through
Microsoft Cluster Server (MSCS).

Chapter 8, “High Availability in the Solaris Operating Environment”
Discusses DB2 support for high availability failover recovery in the
Solaris Operating Environment, which is currently implemented
through Sun Cluster 3.0 (SC3.0) or Veritas Cluster Server (VCS).

Appendixes

Appendix A, “How to Read the Syntax Diagrams”
Explains the conventions used in syntax diagrams.

Appendix B, “Warning, Error and Completion Messages”
Provides information about interpreting messages generated by the
database manager when a warning or error condition has been
detected.

Appendix C, “Additional DB2 Commands”
Describes recovery-related DB2 commands.

Appendix D, “Additional APIs and Associated Data Structures”
Describes recovery-related APIs and their data structures.

Appendix E, “Recovery Sample Program”
Provides the code listing for a sample program containing
recovery-related DB2 APIs and embedded SQL calls, and information
on how to use them.

Appendix F, “Tivoli Storage Manager”
Provides information about the Tivoli Storage Manager (TSM,
formerly ADSM) product, which you can use to manage database or
table space backup operations.

Appendix G, “User Exit for Database Recovery”
Discusses how user exit programs can be used with database log files,
and describes some sample user exit programs.

viii Data Recovery and High Availability Guide and Reference

Appendix H, “Backup and Restore APIs for Vendor Products”
Describes the function and use of APIs that enable DB2 to interface
with other vendor software.

About This Book ix

x Data Recovery and High Availability Guide and Reference

Part 1. Data Recovery

© Copyright IBM Corp. 2001, 2002 1

2 Data Recovery and High Availability Guide and Reference

Chapter 1. Developing a Good Backup and Recovery
Strategy

This section discusses factors to consider when choosing database and table
space recovery methods, including backing up and restoring a database or
table space, and using rollforward recovery.

The following topics are covered:
v “Developing a Backup and Recovery Strategy”
v “Deciding How Often to Back Up” on page 7
v “Storage Considerations” on page 9
v “Keeping Related Data Together” on page 10
v “Using Different Operating Systems” on page 10
v “Crash Recovery” on page 11
v “Disaster Recovery” on page 23
v “Version Recovery” on page 24
v “Rollforward Recovery” on page 25
v “Incremental Backup and Recovery” on page 28
v “Understanding Recovery Logs” on page 34
v “Understanding the Recovery History File” on page 54
v “Understanding Table Space States” on page 59
v “Enhancing Recovery Performance” on page 60

Developing a Backup and Recovery Strategy

A database can become unusable because of hardware or software failure, or
both. You may, at one time or another, encounter storage problems, power
interruptions, and application failures, and different failure scenarios require
different recovery actions. Protect your data against the possibility of loss by
having a well rehearsed recovery strategy in place. Some of the questions that
you should answer when developing your recovery strategy are: Will the
database be recoverable? How much time can be spent recovering the
database? How much time will pass between backup operations? How much
storage space can be allocated for backup copies and archived logs? Will table
space level backups be sufficient, or will full database backups be necessary?

A database recovery strategy should ensure that all information is available
when it is required for database recovery. It should include a regular schedule

© Copyright IBM Corp. 2001, 2002 3

for taking database backups and, in the case of partitioned database systems,
include backups when the system is scaled (when database partition servers
or nodes are added or dropped). Your overall strategy should also include
procedures for recovering command scripts, applications, user-defined
functions (UDFs), stored procedure code in operating system libraries, and
load copies.

Different recovery methods are discussed in the sections that follow, and you
will discover which recovery method is best suited to your business
environment.

The concept of a database backup is the same as any other data backup: taking
a copy of the data and then storing it on a different medium in case of failure
or damage to the original. The simplest case of a backup involves shutting
down the database to ensure that no further transactions occur, and then
simply backing it up. You can then rebuild the database if it becomes
damaged or corrupted in some way.

The rebuilding of the database is called recovery. Version recovery is the
restoration of a previous version of the database, using an image that was
created during a backup operation. Rollforward recovery is the reapplication of
transactions recorded in the database log files after a database or a table space
backup image has been restored.

Crash recovery is the automatic recovery of the database if a failure occurs
before all of the changes that are part of one or more units of work
(transactions) are completed and committed. This is done by rolling back
incomplete transactions and completing committed transactions that were still
in memory when the crash occurred.

Recovery log files and the recovery history file are created automatically when
a database is created (Figure 1 on page 5). These log files are important if you
need to recover data that is lost or damaged. You cannot directly modify a
recovery log file or the recovery history file; however, you can delete entries
from the recovery history file using the PRUNE HISTORY command. You can
also use the rec_his_retentn database configuration parameter to specify the
number of days that the recovery history file will be retained.

4 Data Recovery and High Availability Guide and Reference

Each database includes recovery logs, which are used to recover from
application or system errors. In combination with the database backups, they
are used to recover the consistency of the database right up to the point in
time when the error occurred.

The recovery history file contains a summary of the backup information that
can be used to determine recovery options, if all or part of the database must
be recovered to a given point in time. It is used to track recovery-related
events such as backup and restore operations, among others. This file is
located in the database directory.

The table space change history file, which is also located in the database
directory, contains information that can be used to determine which log files
are required for the recovery of a particular table space.

Instance(s)

System

Database Object/Concept Equivalent Physical Object

Database(s)

Table
Space
Change
History File

Recovery
History
File

Log
Files

Figure 1. Recovery Log Files and the Recovery History File

Chapter 1. Developing a Good Backup and Recovery Strategy 5

Data that is easily recreated can be stored in a non-recoverable database. This
includes data from an outside source that is used for read-only applications,
and tables that are not often updated, for which the small amount of logging
does not justify the added complexity of managing log files and rolling
forward after a restore operation. Non-recoverable databases have both the
logretain and the userexit database configuration parameters disabled. This
means that the only logs that are kept are those required for crash recovery.
These logs are known as active logs, and they contain current transaction data.
Version recovery using offline backups is the primary means of recovery for a
non-recoverable database. (An offline backup means that no other application
can use the database when the backup operation is in progress.) Such a
database can only be restored offline. It is restored to the state it was in when
the backup image was taken and rollforward recovery is not supported.

Data that cannot be easily recreated should be stored in a recoverable
database. This includes data whose source is destroyed after the data is
loaded, data that is manually entered into tables, and data that is modified by
application programs or users after it is loaded into the database. Recoverable
databases have either the logretain database configuration parameter set to
“RECOVERY”, the userexit database configuration parameter enabled, or both.
Active logs are still available for crash recovery, but you also have the archived
logs, which contain committed transaction data. Such a database can only be
restored offline. It is restored to the state it was in when the backup image
was taken. However, with rollforward recovery, you can roll the database
forward (that is, past the time when the backup image was taken) by using the
active and archived logs to either a specific point in time, or to the end of the
active logs.

Recoverable database backup operations can be performed either offline or
online (online meaning that other applications can connect to the database
during the backup operation). Database restore and rollforward operations
must always be performed offline. During an online backup operation,
rollforward recovery ensures that all table changes are captured and reapplied
if that backup is restored.

If you have a recoverable database, you can back up, restore, and roll
individual table spaces forward, rather than the entire database. When you
back up a table space online, it is still available for use, and simultaneous
updates are recorded in the logs. When you perform an online restore or
rollforward operation on a table space, the table space itself is not available
for use until the operation completes, but users are not prevented from
accessing tables in other table spaces.

Related concepts:

v “Crash Recovery” on page 11

6 Data Recovery and High Availability Guide and Reference

v “Version Recovery” on page 24
v “Rollforward Recovery” on page 25
v “Data Links server file backups” in the Post V8 GA

v “Failure and recovery overview” in the DB2 Data Links Manager
Administration Guide and Reference

Related reference:

v “Recovery History Retention Period configuration parameter -
rec_his_retentn” in the Administration Guide: Performance

v “DB2 Data Links Manager system setup and backup recommendations” in
the DB2 Data Links Manager Administration Guide and Reference

Deciding How Often to Back Up

Your recovery plan should allow for regularly scheduled backup operations,
because backing up a database requires time and system resources. Your plan
may include a combination of full database backups and incremental backup
operations.

You should take full database backups regularly, even if you archive the logs
(which allows for rollforward recovery). It is more time consuming to rebuild
a database from a collection of table space backup images than it is to recover
the database from a full database backup image. Table space backup images
are useful for recovering from an isolated disk failure or an application error.

You should also consider not overwriting backup images and logs, saving at
least two full database backup images and their associated logs as an extra
precaution.

If the amount of time needed to apply archived logs when recovering and
rolling a very active database forward is a major concern, consider the cost of
backing up the database more frequently. This reduces the number of archived
logs you need to apply when rolling forward.

You can initiate a backup operation while the database is either online or
offline. If it is online, other applications or processes can connect to the
database, as well as read and modify data while the backup operation is
running. If the backup operation is running offline, other applications cannot
connect to the database.

To reduce the amount of time that the database is not available, consider
using online backup operations. Online backup operations are supported only
if rollforward recovery is enabled. If rollforward recovery is enabled and you
have a complete set of recovery logs, you can rebuild the database, should the

Chapter 1. Developing a Good Backup and Recovery Strategy 7

need arise. You can only use an online backup image for recovery if you have
the logs that span the time during which the backup operation was running.

Offline backup operations are faster than online backup operations, since there
is no contention for the data files.

The backup utility lets you back up selected table spaces. If you use DMS
table spaces, you can store different types of data in their own table spaces to
reduce the time required for backup operations. You can keep table data in
one table space, long field and LOB data in another table space, and indexes
in yet another table space. If you do this and a disk failure occurs, it is likely
to affect only one of the table spaces. Restoring or rolling forward one of these
table spaces will take less time than it would have taken to restore a single
table space containing all of the data.

You can also save time by taking backups of different table spaces at different
times, as long as the changes to them are not the same. So, if long field or
LOB data is not changed as frequently as the other data, you can back up
these table spaces less frequently. If long field and LOB data are not required
for recovery, you can also consider not backing up the table space that
contains that data. If the LOB data can be reproduced from a separate source,
choose the NOT LOGGED option when creating or altering a table to include
LOB columns.

Note: Consider the following if you keep your long field data, LOB data, and
indexes in separate table spaces, but do not back them up together: If
you back up a table space that does not contain all of the table data,
you cannot perform point-in-time rollforward recovery on that table
space. All the table spaces that contain any type of data for a table
must be rolled forward simultaneously to the same point in time.

If you reorganize a table, you should back up the affected table spaces after
the operation completes. If you have to restore the table spaces, you will not
have to roll forward through the data reorganization.

The time required to recover a database is made up of two parts: the time
required to complete the restoration of the backup; and, if the database is
enabled for forward recovery, the time required to apply the logs during the
rollforward operation. When formulating a recovery plan, you should take
these recovery costs and their impact on your business operations into
account. Testing your overall recovery plan will assist you in determining
whether the time required to recover the database is reasonable given your
business requirements. Following each test, you may want to increase the
frequency with which you take a backup. If rollforward recovery is part of

8 Data Recovery and High Availability Guide and Reference

your strategy, this will reduce the number of logs that are archived between
backups and, as a result, reduce the time required to roll the database forward
after a restore operation.

Related concepts:

v “Incremental Backup and Recovery” on page 28

Related reference:

v Appendix G, “User Exit for Database Recovery” on page 323
v “Configuration Parameters for Database Logging” on page 39

Storage Considerations

When deciding which recovery method to use, consider the storage space
required.

The version recovery method requires space to hold the backup copy of the
database and the restored database. The rollforward recovery method requires
space to hold the backup copy of the database or table spaces, the restored
database, and the archived database logs.

If a table contains long field or large object (LOB) columns, you should
consider placing this data into a separate table space. This will affect your
storage space considerations, as well as affect your plan for recovery. With a
separate table space for long field and LOB data, and knowing the time
required to back up long field and LOB data, you may decide to use a
recovery plan that only occasionally saves a backup of this table space. You
may also choose, when creating or altering a table to include LOB columns,
not to log changes to those columns. This will reduce the size of the required
log space and the corresponding log archive space.

To prevent media failure from destroying a database and your ability to
rebuild it, keep the database backup, the database logs, and the database itself
on different devices. For this reason, it is highly recommended that you use
the newlogpath configuration parameter to put database logs on a separate
device once the database is created.

The database logs can use up a large amount of storage. If you plan to use the
rollforward recovery method, you must decide how to manage the archived
logs. Your choices are the following:
v Use a user exit program to copy these logs to another storage device in

your environment.
v Manually copy the logs to a storage device or directory other than the

database log path directory after they are no longer in the active set of logs.

Chapter 1. Developing a Good Backup and Recovery Strategy 9

Keeping Related Data Together

As part of your database design, you will know the relationships that exist
between tables. These relationships can be expressed at the application level,
when transactions update more than one table, or at the database level, where
referential integrity exists between tables, or where triggers on one table affect
another table. You should consider these relationships when developing a
recovery plan. You will want to back up related sets of data together. Such
sets can be established at either the table space or the database level. By
keeping related sets of data together, you can recover to a point where all of
the data is consistent. This is especially important if you want to be able to
perform point-in-time rollforward recovery on table spaces.

Using Different Operating Systems

When working in an environment that has more than one operating system,
you must consider that in most cases, the backup and recovery plans cannot
be integrated. That is, you cannot usually back up a database on one
operating system, and then restore that database on another operating system.
In such cases, you should keep the recovery plans for each operating system
separate and independent.

There is, however, support for cross-platform backup and restore operations
between operating systems with similar architectures such as AIX® and Sun
Solaris, and between 32 bit and 64 bit operating systems. When you transfer
the backup image between systems, you must transfer it in binary mode. The
target system must have the same (or later) version of DB2® as the source
system. Restore operations to a down-level system are not supported.

If you must move tables from one operating system to another, and
cross-platform backup and restore support is not available in your
environment, you can use the db2move command, or the export utility
followed by the import or the load utility.

Related reference:

v “db2move - Database Movement Tool” in the Command Reference

v “EXPORT” in the Command Reference

v “IMPORT” in the Command Reference

v “LOAD” in the Command Reference

10 Data Recovery and High Availability Guide and Reference

Crash Recovery

Transactions (or units of work) against a database can be interrupted
unexpectedly. If a failure occurs before all of the changes that are part of the
unit of work are completed and committed, the database is left in an
inconsistent and unusable state. Crash recovery is the process by which the
database is moved back to a consistent and usable state. This is done by
rolling back incomplete transactions and completing committed transactions
that were still in memory when the crash occurred (Figure 2). When a
database is in a consistent and usable state, it has attained what is known as a
″point of consistency″.

A transaction failure results from a severe error or condition that causes the
database or the database manager to end abnormally. Partially completed
units of work, or UOW that have not been flushed to disk at the time of
failure, leave the database in an inconsistent state. Following a transaction
failure, the database must be recovered. Conditions that can result in
transaction failure include:
v A power failure on the machine, causing the database manager and the

database partitions on it to go down
v A serious operating system error that causes DB2® to go down
v A hardware failure such as memory corruption, or disk, CPU, or network

failure.

If you want the rollback of incomplete units of work to be done automatically
by the database manager, enable the automatic restart (autorestart) database
configuration parameter by setting it to ON. (This is the default value.) If you

1

2

3

4

rollback

rollback

rollback

rollback

Units of work

Crash
All four rolled back

TIME

Figure 2. Rolling Back Units of Work (Crash Recovery)

Chapter 1. Developing a Good Backup and Recovery Strategy 11

do not want automatic restart behavior, set the autorestart database
configuration parameter to OFF. As a result, you will need to issue the
RESTART DATABASE command when a database failure occurs. If the
database I/O was suspended before the crash occurred, you must specify the
WRITE RESUME option of the RESTART DATABASE command in order for
the crash recovery to continue. The administration notification log records
when the database restart operation begins.

If crash recovery is applied to a database that is enabled for forward recovery
(that is, the logretain configuration parameter is set to RECOVERY, or the userexit
configuration parameter is enabled), and an error occurs during crash
recovery that is attributable to an individual table space, that table space will
be taken offline, and cannot be accessed until it is repaired. Crash recovery
continues. At the completion of crash recovery, the other table spaces in the
database will be accessible, and connections to the database can be
established. However, if the table space that is taken offline is the table space
that contains the system catalogs, it must be repaired before any connections
will be permitted.

Related reference:

v “Auto Restart Enable configuration parameter - autorestart” in the
Administration Guide: Performance

Crash Recovery - Details

Recovering Damaged Table Spaces

A damaged table space has one or more containers that cannot be accessed.
This is often caused by media problems that are either permanent (for
example, a bad disk), or temporary (for example, an offline disk, or an
unmounted file system).

If the damaged table space is the system catalog table space, the database
cannot be restarted. If the container problems cannot be fixed leaving the
original data intact, the only available options are:
v To restore the database
v To restore the catalog table space. (Table space restore is only valid for

recoverable databases, because the database must be rolled forward.)

If the damaged table space is not the system catalog table space, DB2®

attempts to make as much of the database available as possible.

If the damaged table space is the only temporary table space, you should
create a new temporary table space as soon as a connection to the database
can be made. Once created, the new temporary table space can be used, and

12 Data Recovery and High Availability Guide and Reference

normal database operations requiring a temporary table space can resume.
You can, if you wish, drop the offline temporary table space. There are special
considerations for table reorganization using a system temporary table space:
v If the database or the database manager configuration parameter indexrec is

set to RESTART, all invalid indexes must be rebuilt during database
activation; this includes indexes from a reorganization that crashed during
the build phase.

v If there are incomplete reorganization requests in a damaged temporary
table space, you may have to set the indexrec configuration parameter to
ACCESS to avoid restart failures.

Recovering Table Spaces in Recoverable Databases
When crash recovery is necessary, a damaged table space will be taken offline
and will not be accessible. It will be placed in roll forward pending state. A
restart operation will succeed if there are no additional problems, and the
damaged table space can be used again once you:
v Fix the damaged containers without losing the original data, and then

complete a table space rollforward operation to the end of the logs. (The
rollforward operation will first attempt to bring it from offline to normal
state.)

v Perform a table space restore operation after fixing the damaged containers
(with or without losing the original data), and then a rollforward operation
to the end of the logs or to a point-in-time.

Recovering Table Spaces in Non-recoverable Databases
Since crash recovery is necessary, and logs are not kept indefinitely, the restart
operation can only succeed if the user is willing to drop the damaged table
spaces. (Successful completion of recovery means that the log records
necessary to recover the damaged table spaces to a consistent state will be
gone; therefore, the only valid action against such table spaces is to drop
them.)

You can do this by invoking an unqualified restart database operation. It will
succeed if there are no damaged table spaces. If it fails (SQL0290N), you can
look in the administration notification log file for a complete list of table
spaces that are currently damaged.
v If you are willing to drop all of these table spaces once the restart database

operation is complete, you can initiate another restart database operation,
listing all of the damaged table spaces under the DROP PENDING
TABLESPACES option. If a damaged table space is included in the DROP
PENDING TABLESPACES list, the table space is put into drop pending
state, and your only option after recovery is to drop the table space. The
restart operation continues without recovering this table space. If a
damaged table space is not included in the DROP PENDING
TABLESPACES list, the restart database operation fails with SQL0290N.

Chapter 1. Developing a Good Backup and Recovery Strategy 13

v If you are unwilling to drop (and thus lose the data in) these table spaces,
your options are to:
– Wait and fix the damaged containers (without losing the original data),

and then try the restart database operation again
– Perform a database restore operation.

Note: Putting a table space name into the DROP PENDING TABLESPACES
list does not mean that the table space will be in drop pending state.
This will occur only if the table space is found to be damaged during
the restart operation. Once the restart operation is successful, you
should issue DROP TABLESPACE statements to drop each of the table
spaces that are in drop pending state (invoke the LIST TABLESPACES
command to find out which table spaces are in this state). This way the
space can be reclaimed, or the table spaces can be recreated.

Reducing the Impact of Media Failure

To reduce the probability of media failure, and to simplify recovery from this
type of failure:
v Mirror or duplicate the disks that hold the data and logs for important

databases.
v Use a Redundant Array of Independent Disks (RAID) configuration, such as

RAID Level 5.
v In a partitioned database environment, set up a rigorous procedure for

handling the data and the logs on the catalog node. Because this node is
critical for maintaining the database:
– Ensure that it resides on a reliable disk
– Duplicate it
– Make frequent backups
– Do not put user data on it.

Protecting Against Disk Failure
If you are concerned about the possibility of damaged data or logs due to a
disk crash, consider the use of some form of disk fault tolerance. Generally,
this is accomplished through the use of a disk array, which is a set of disks.

A disk array is sometimes referred to simply as a RAID (Redundant Array of
Independent Disks). Disk arrays can also be provided through software at the
operating system or application level. The point of distinction between
hardware and software disk arrays is how CPU processing of input/output
(I/O) requests is handled. For hardware disk arrays, I/O activity is managed
by disk controllers; for software disk arrays, this is done by the operating
system or an application.

14 Data Recovery and High Availability Guide and Reference

Hardware Disk Arrays: In a hardware disk array, multiple disks are used
and managed by a disk controller, complete with its own CPU. All of the logic
required to manage the disks forming this array is contained on the disk
controller; therefore, this implementation is operating system-independent.

There are several types of RAID architecture, differing in function and
performance, but only RAID level 1 and level 5 are commonly used today.

RAID level 1 is also known as disk mirroring or duplexing. Disk mirroring
copies data (a complete file) from one disk to a second disk, using a single
disk controller. Disk duplexing is similar to disk mirroring, except that disks
are attached to a second disk controller (like two SCSI adapters). Data
protection is good: Either disk can fail, and data is still accessible from the
other disk. With disk duplexing, a disk controller can also fail without
compromising data protection. Performance is good, but this implementation
requires twice the usual number of disks.

RAID level 5 involves data and parity striping by sectors, across all disks.
Parity is interleaved with data, rather than being stored on a dedicated drive.
Data protection is good: If any disk fails, the data can still be accessed by
using information from the other disks, along with the striped parity
information. Read performance is good, but write performance is not. A RAID
level 5 configuration requires a minimum of three identical disks. The amount
of disk space required for overhead varies with the number of disks in the
array. In the case of a RAID level 5 configuration with 5 disks, the space
overhead is 20 percent.

When using a RAID (but not a RAID level 0) disk array, a failed disk will not
prevent you from accessing data on the array. When hot-pluggable or
hot-swappable disks are used in the array, a replacement disk can be swapped
with the failed disk while the array is in use. With RAID level 5, if two disks
fail at the same time, all data is lost (but the probability of simultaneous disk
failures is very small).

You might consider using a RAID level 1 hardware disk array or a software
disk array for your logs, because this provides recoverability to the point of
failure, and offers good write performance, which is important for logs. In
cases where reliability is critical (because time cannot be lost recovering data
following a disk failure), and write performance is not so critical, consider
using a RAID level 5 hardware disk array. Alternatively, if write performance
is critical, and the cost of additional disk space is not significant, consider a
RAID level 1 hardware disk array for your data, as well as for your logs.

For detailed information about the available RAID levels, visit the following
web site: http://www.acnc.com/04_01_00.html

Chapter 1. Developing a Good Backup and Recovery Strategy 15

http://www.acnc.com/04_01_00.html

Software Disk Arrays: A software disk array accomplishes much the same as
does a hardware disk array, but disk traffic is managed by either the
operating system, or by an application program running on the server. Like
other programs, the software array must compete for CPU and system
resources. This is not a good option for a CPU-constrained system, and it
should be remembered that overall disk array performance is dependent on
the server’s CPU load and capacity.

A typical software disk array provides disk mirroring. Although redundant
disks are required, a software disk array is comparatively inexpensive to
implement, because costly disk controllers are not required.

CAUTION:
Having the operating system boot drive in the disk array prevents your
system from starting if that drive fails. If the drive fails before the disk
array is running, the disk array cannot allow access to the drive. A boot
drive should be separate from the disk array.

Reducing the Impact of Transaction Failure

To reduce the impact of a transaction failure, try to ensure:
v An uninterrupted power supply
v Adequate disk space for database logs
v Reliable communication links among the database partition servers in a

partitioned database environment
v Synchronization of the system clocks in a partitioned database environment.

Related concepts:

v “Synchronizing Clocks in a Partitioned Database System” on page 132

Recovering from Transaction Failures in a Partitioned Database
Environment

If a transaction failure occurs in a partitioned database environment, database
recovery is usually necessary on both the failed database partition server and
any other database partition server that was participating in the transaction:
v Crash recovery occurs on the failed database partition server after the

antecedent condition is corrected.
v Database partition failure recovery on the other (still active) database partition

servers occurs immediately after the failure has been detected.

In a partitioned database environment, the database partition server on which
an application is submitted is the coordinator node, and the first agent that
works for the application is the coordinator agent. The coordinator agent is
responsible for distributing work to other database partition servers, and it

16 Data Recovery and High Availability Guide and Reference

keeps track of which ones are involved in the transaction. When the
application issues a COMMIT statement for a transaction, the coordinator
agent commits the transaction by using the two-phase commit protocol.
During the first phase, the coordinator node distributes a PREPARE request to
all the other database partition servers that are participating in the transaction.
These servers then respond with one of the following:

READ-ONLY No data change occurred at this server

YES Data change occurred at this server

NO Because of an error, the server is not prepared
to commit

If one of the servers responds with a NO, the transaction is rolled back.
Otherwise, the coordinator node begins the second phase.

During the second phase, the coordinator node writes a COMMIT log record,
then distributes a COMMIT request to all the servers that responded with a
YES. After all the other database partition servers have committed, they send
an acknowledgment of the COMMIT to the coordinator node. The transaction
is complete when the coordinator agent has received all COMMIT
acknowledgments from all the participating servers. At this point, the
coordinator agent writes a FORGET log record.

Transaction Failure Recovery on an Active Database Partition Server
If any database partition server detects that another server is down, all work
that is associated with the failed database partition server is stopped:
v If the still active database partition server is the coordinator node for an

application, and the application was running on the failed database
partition server (and not ready to COMMIT), the coordinator agent is
interrupted to do failure recovery. If the coordinator agent is in the second
phase of COMMIT processing, SQL0279N is returned to the application,
which in turn loses its database connection. Otherwise, the coordinator
agent distributes a ROLLBACK request to all other servers participating in
the transaction, and SQL1229N is returned to the application.

v If the failed database partition server was the coordinator node for the
application, agents that are still working for the application on the active
servers are interrupted to do failure recovery. The current transaction is
rolled back locally on each server, unless it has been prepared and is
waiting for the transaction outcome. In this situation, the transaction is left
in doubt on the active database partition servers, and the coordinator node
is not aware of this (because it is not available).

v If the application connected to the failed database partition server (before it
failed), but neither the local database partition server nor the failed
database partition server is the coordinator node, agents working for this
application are interrupted. The coordinator node will either send a

Chapter 1. Developing a Good Backup and Recovery Strategy 17

ROLLBACK or a disconnect message to the other database partition servers.
The transaction will only be indoubt on database partition servers that are
still active if the coordinator node returns SQL0279.

Any process (such as an agent or deadlock detector) that attempts to send a
request to the failed server is informed that it cannot send the request.

Transaction Failure Recovery on the Failed Database Partition Server
If the transaction failure causes the database manager to end abnormally, you
can issue the db2start command with the RESTART option to restart the
database manager once the database partition has been restarted. If you
cannot restart the database partition, you can issue db2start to restart the
database manager on a different partition.

If the database manager ends abnormally, database partitions on the server
may be left in an inconsistent state. To make them usable, crash recovery can
be triggered on a database partition server:
v Explicitly, through the RESTART DATABASE command
v Implicitly, through a CONNECT request when the autorestart database

configuration parameter has been set to ON

Crash recovery reapplies the log records in the active log files to ensure that
the effects of all complete transactions are in the database. After the changes
have been reapplied, all uncommitted transactions are rolled back locally,
except for indoubt transactions. There are two types of indoubt transaction in a
partitioned database environment:
v On a database partition server that is not the coordinator node, a

transaction is in doubt if it is prepared but not yet committed.
v On the coordinator node, a transaction is in doubt if it is committed but not

yet logged as complete (that is, the FORGET record is not yet written). This
situation occurs when the coordinator agent has not received all the
COMMIT acknowledgments from all the servers that worked for the
application.

Crash recovery attempts to resolve all the indoubt transactions by doing one
of the following. The action that is taken depends on whether the database
partition server was the coordinator node for an application:
v If the server that restarted is not the coordinator node for the application, it

sends a query message to the coordinator agent to discover the outcome of
the transaction.

v If the server that restarted is the coordinator node for the application, it
sends a message to all the other agents (subordinate agents) that the
coordinator agent is still waiting for COMMIT acknowledgments.

18 Data Recovery and High Availability Guide and Reference

It is possible that crash recovery may not be able to resolve all the indoubt
transactions (for example, some of the database partition servers may not be
available). In this situation, the SQL warning message SQL1061W is returned.
Because indoubt transactions hold resources, such as locks and active log
space, it is possible to get to a point where no changes can be made to the
database because the active log space is being held up by indoubt
transactions. For this reason, you should determine whether indoubt
transactions remain after crash recovery, and recover all database partition
servers that are required to resolve the indoubt transactions as quickly as
possible.

If one or more servers that are required to resolve an indoubt transaction
cannot be recovered in time, and access is required to database partitions on
other servers, you can manually resolve the indoubt transaction by making an
heuristic decision. You can use the LIST INDOUBT TRANSACTIONS
command to query, commit, and roll back the indoubt transaction on the
server.

Note: The LIST INDOUBT TRANSACTIONS command is also used in a
distributed transaction environment. To distinguish between the two
types of indoubt transactions, the originator field in the output that is
returned by the LIST INDOUBT TRANSACTIONS command displays
one of the following:
v DB2 Universal Database Enterprise - Extended Edition, which

indicates that the transaction originated in a partitioned database
environment.

v XA, which indicates that the transaction originated in a distributed
environment.

Identifying the Failed Database Partition Server
When a database partition server fails, the application will typically receive
one of the following SQLCODEs. The method for detecting which database
manager failed depends on the SQLCODE received:

SQL0279N
This SQLCODE is received when a database partition server involved
in a transaction is terminated during COMMIT processing.

SQL1224N
This SQLCODE is received when the database partition server that
failed is the coordinator node for the transaction.

SQL1229N
This SQLCODE is received when the database partition server that
failed is not the coordinator node for the transaction.

Chapter 1. Developing a Good Backup and Recovery Strategy 19

Determining which database partition server failed is a two-step process. The
SQLCA associated with SQLCODE SQL1229N contains the node number of
the server that detected the error in the sixth array position of the sqlerrd field.
(The node number that is written for the server corresponds to the node
number in the db2nodes.cfg file.) On the database partition server that detects
the error, a message that indicates the node number of the failed server is
written to the administration notification log.

Note: If multiple logical nodes are being used on a processor, the failure of
one logical node may cause other logical nodes on the same processor
to fail.

Related concepts:

v “Two-phase commit” in the Administration Guide: Planning

v “Error recovery during two-phase commit” in the Administration Guide:
Planning

Related tasks:

v “Manually resolving indoubt transactions” in the Administration Guide:
Planning

Related reference:

v “db2start - Start DB2” in the Command Reference

v “LIST INDOUBT TRANSACTIONS” in the Command Reference

Recovering from the Failure of a Database Partition Server

Procedure:

To recover from the failure of a database partition server:
1. Correct the problem that caused the failure.
2. Restart the database manager by issuing the db2start command from any

database partition server.
3. Restart the database by issuing the RESTART DATABASE command on

the failed database partition server or servers.

Related concepts:

v “Recovering from Transaction Failures in a Partitioned Database
Environment” on page 16

Related reference:

v “db2start - Start DB2” in the Command Reference

v “RESTART DATABASE” in the Command Reference

20 Data Recovery and High Availability Guide and Reference

Recovering Indoubt Transactions on the Host when DB2 Connect Has the
DB2 Syncpoint Manager Configured

If your application has accessed a host or AS/400 database server during a
transaction, there are some differences in how indoubt transactions are
recovered.

To access host or AS/400 database servers, DB2 Connect is used. The recovery
steps differ if DB2 Connect has the DB2 Syncpoint Manager configured.

Procedures:

The recovery of indoubt transactions at host or AS/400 servers is normally
performed automatically by the Transaction Manager (TM) and the DB2
Syncpoint Manager (SPM). An indoubt transaction at a host or AS/400 server
does not hold any resources at the local DB2 location, but does hold resources
at the host or AS/400 server as long as the transaction is indoubt at that
location. If the administrator of the host or AS/400 server determines that a
heuristic decision must be made, then the administrator may contact the local
DB2 database administrator (for example via telephone) to determine whether
to commit or roll back the transaction at the host or AS/400 server. If this
occurs, the LIST DRDA INDOUBT TRANSACTIONS command can be used to
determine the state of the transaction at the DB2 Connect instance. The
following steps can be used as a guideline for most situations involving an
SNA communications environment.
1. Connect to the SPM as shown below:

db2 => connect to db2spm

Database Connection Information

Database product = SPM0500
SQL authorization ID = CRUS
Local database alias = DB2SPM

2. Issue the LIST DRDA INDOUBT TRANSACTIONS command to display
the indoubt transactions known to the SPM. The example below shows
one indoubt transaction known to the SPM. The db_name is the local alias
for the host or AS/400 server. The partner_lu is the fully qualified luname
of the host or AS/400 server. This provides the best identification of the
host or AS/400 server, and should be provided by the caller from the host
or AS/400 server. The luwid provides a unique identifier for a transaction
and is available at all hosts and AS/400 servers. If the transaction in
question is displayed, then the uow_status field can be used to determine
the outcome of the transaction if the value is C (commit) or R (rollback). If
you issue the LIST DRDA INDOUBT TRANSACTIONS command with the
WITH PROMPTING parameter, you can commit, roll back, or forget the
transaction interactively.

Chapter 1. Developing a Good Backup and Recovery Strategy 21

db2 => list drda indoubt transactions
DRDA Indoubt Transactions:
1.db_name: DBAS3 db_alias: DBAS3 role: AR

uow_status: C partner_status: I partner_lu: USIBMSY.SY12DQA
corr_tok: USIBMST.STB3327L
luwid: USIBMST.STB3327.305DFDA5DC00.0001
xid: 53514C2000000017 00000000544D4442 0000000000305DFD A63055E962000000

00035F

3. If an indoubt transaction for the partner_lu and for the luwid is not
displayed, or if the LIST DRDA INDOUBT TRANSACTIONS command
returns as follows:
db2 => list drda indoubt transactions
SQL1251W No data returned for heuristic query.

then the transaction was rolled back.

There is another unlikely but possible situation that may occur. If an
indoubt transaction with the proper luwid for the partner_lu is displayed,
but the uow_status is ″I″, the SPM doesn’t know whether the transaction is
to be committed or rolled back. In this situation, you should use the WITH
PROMPTING parameter to either commit or roll back the transaction on
the DB2 Connect workstation. Then allow DB2 Connect to resynchronize
with the host or AS/400 server based on the heuristic decision.

Related tasks:

v “Recovering Indoubt Transactions on the Host when DB2 Connect Does
Not Use the DB2 Syncpoint Manager” on page 22

Related reference:

v “db2start - Start DB2” in the Command Reference

v “LIST INDOUBT TRANSACTIONS” in the Command Reference

v “RESTART DATABASE” in the Command Reference

Recovering Indoubt Transactions on the Host when DB2 Connect Does
Not Use the DB2 Syncpoint Manager

If your application has accessed a host or AS/400 database server during a
transaction, there are some differences in how indoubt transactions are
recovered.

To access host or AS/400 database servers, DB2 Connect is used. The recovery
steps differ if DB2 Connect has the DB2 Syncpoint Manager configured.

Procedure:

22 Data Recovery and High Availability Guide and Reference

Use the information in this section when TCP/IP connectivity is used to
update DB2 for OS/390 in a multisite update from either DB2 Connect
Personal Edition or DB2 Connect Enterprise Server Edition, and the DB2
Syncpoint Manager is not used. The recovery of indoubt transactions in this
situation differs from that for indoubt transactions involving the DB2
Syncpoint Manager. When an indoubt transaction occurs in this environment,
an alert entry is generated at the client, at the database server, and (or) at the
Transaction Manager (TM) database, depending on who detected the problem.
The alert entry is placed in the db2alert.log file.

The resynchronization of any indoubt transactions occurs automatically as
soon as the TM and the participating databases and their connections are all
available again. You should allow automatic resynchronization to occur rather
than heuristically force a decision at the database server. If, however, you
must do this then use the following steps as a guideline.

Note: Because the DB2 Syncpoint Manager is not involved, you cannot use
the LIST DRDA INDOUBT TRANSACTIONS command.

1. On the OS/390 host, issue the command DISPLAY THREAD
TYPE(INDOUBT).
From this list identify the transaction that you want to heuristically
complete. For details about the DISPLAY command, see the DB2 for
OS/390 Command Reference. The LUWID displayed can be matched to the
same luwid at the Transaction Manager Database.

2. Issue the RECOVER THREAD(<LUWID>) ACTION(ABORT|COMMIT)
command, depending on what you want to do.
For details about the RECOVER command, see the DB2 for OS/390
Command Reference.

Related tasks:

v “Recovering Indoubt Transactions on the Host when DB2 Connect Has the
DB2 Syncpoint Manager Configured” on page 21

Related reference:

v “LIST INDOUBT TRANSACTIONS” in the Command Reference

Disaster Recovery

The term disaster recovery is used to describe the activities that need to be
done to restore the database in the event of a fire, earthquake, vandalism, or
other catastrophic events. A plan for disaster recovery can include one or
more of the following:
v A site to be used in the event of an emergency

Chapter 1. Developing a Good Backup and Recovery Strategy 23

v A different machine on which to recover the database
v Off-site storage of database backups and archived logs.

If your plan for disaster recovery is to recover the entire database on another
machine, you require at least one full database backup and all the archived
logs for the database. You may choose to keep a standby database up to date
by applying the logs to it as they are archived. Or, you may choose to keep
the database backup and log archives in the standby site, and perform restore
and rollforward operations only after a disaster has occurred. (In this case, a
recent database backup is clearly desirable.) With a disaster, however, it is
generally not possible to recover all of the transactions up to the time of the
disaster.

The usefulness of a table space backup for disaster recovery depends on the
scope of the failure. Typically, disaster recovery requires that you restore the
entire database; therefore, a full database backup should be kept at a standby
site. Even if you have a separate backup image of every table space, you
cannot use them to recover the database. If the disaster is a damaged disk, a
table space backup of each table space on that disk can be used to recover. If
you have lost access to a container because of a disk failure (or for any other
reason), you can restore the container to a different location.

Both table space backups and full database backups can have a role to play in
any disaster recovery plan. The DB2® facilities available for backing up,
restoring, and rolling data forward provide a foundation for a disaster
recovery plan. You should ensure that you have tested recovery procedures in
place to protect your business.

Related concepts:

v “Redefining Table Space Containers During a Restore Operation (Redirected
Restore)” on page 93

Version Recovery

Version recovery is the restoration of a previous version of the database, using
an image that was created during a backup operation. You use this recovery
method with non-recoverable databases (that is, databases for which you do
not have archived logs). You can also use this method with recoverable
databases by using the WITHOUT ROLLING FORWARD option on the
RESTORE DATABASE command. A database restore operation will rebuild
the entire database using a backup image created earlier. A database backup
allows you to restore a database to a state identical to the one at the time that
the backup was made. However, every unit of work from the time of the
backup to the time of the failure is lost (see Figure 3 on page 25).

24 Data Recovery and High Availability Guide and Reference

Using the version recovery method, you must schedule and perform full
backups of the database on a regular basis.

In a partitioned database environment, the database is located across many
database partition servers (or nodes). You must restore all partitions, and the
backup images that you use for the restore database operation must all have
been taken at the same time. (Each database partition is backed up and
restored separately.) A backup of each database partition taken at the same
time is known as a version backup.

Rollforward Recovery

To use the rollforward recovery method, you must have taken a backup of the
database, and archived the logs (by enabling either the logretain or the userexit
database configuration parameters, or both). Restoring the database and
specifying the WITHOUT ROLLING FORWARD option is equivalent to using
the version recovery method. The database is restored to a state identical to
the one at the time that the offline backup image was made. If you restore the
database and do not specify the WITHOUT ROLLING FORWARD option for
the restore database operation, the database will be in rollforward pending
state at the end of the restore operation. This allows rollforward recovery to
take place.

Note: The WITHOUT ROLLING FORWARD option cannot be used if the
database backup was taken online.

CREATE
database

BACKUP
database

BACKUP
database

image

TIME

create

RESTORE
database

Units of work

Figure 3. Version Recovery. The database is restored from the latest backup image, but all units of
work processed between the time of backup and failure are lost.

Chapter 1. Developing a Good Backup and Recovery Strategy 25

The two types of rollforward recovery to consider are:
v Database rollforward recovery. In this type of rollforward recovery,

transactions recorded in database logs are applied following the database
restore operation (see Figure 4). The database logs record all changes made
to the database. This method completes the recovery of the database to its
state at a particular point in time, or to its state immediately before the
failure (that is, to the end of the active logs.)
In a partitioned database environment, the database is located across many
database partitions. If you are performing point-in-time rollforward
recovery, all database partitions must be rolled forward to ensure that all
partitions are at the same level. If you need to restore a single database
partition, you can perform rollforward recovery to the end of the logs to
bring it up to the same level as the other partitions in the database. Only
recovery to the end of the logs can be used if one database partition is
being rolled forward. Point-in-time recovery applies to all database
partitions.

v Table space rollforward recovery. If the database is enabled for forward
recovery, it is also possible to back up, restore, and roll table spaces forward
(see Figure 5 on page 27). To perform a table space restore and rollforward
operation, you need a backup image of either the entire database (that is,
all of the table spaces), or one or more individual table spaces. You also
need the log records that affect the table spaces that are to be recovered.
You can roll forward through the logs to one of two points:
– The end of the logs; or,
– A particular point in time (called point-in-time recovery).

Table space rollforward recovery can be used in the following two situations:
v After a table space restore operation, the table space is always in

rollforward pending state, and it must be rolled forward. Invoke the

CREATE
database

BACKUP
database

TIME

BACKUP
database

RESTORE
database

ROLLFORWARD

changes in logs
Units of workUnits of work

update update

n archived logs
1 active log

n archived logs
1 active log

Figure 4. Database Rollforward Recovery. There can be more than one active log in the case of a
long-running transaction.

26 Data Recovery and High Availability Guide and Reference

ROLLFORWARD DATABASE command to apply the logs against the table
spaces to either a point in time, or to the end of the logs.

v If one or more table spaces are in rollforward pending state after crash
recovery, first correct the table space problem. In some cases, correcting the
table space problem does not involve a restore database operation. For
example, a power loss could leave the table space in rollforward pending
state. A restore database operation is not required in this case. Once the
problem with the table space is corrected, you can use the ROLLFORWARD
DATABASE command to apply the logs against the table spaces to the end
of the logs. If the problem is corrected before crash recovery, crash recovery
may be sufficient to take the database to a consistent, usable state.

Note: If the table space in error contains the system catalog tables, you will
not be able to start the database. You must restore the
SYSCATSPACE table space, then perform rollforward recovery to the
end of the logs.

In a partitioned database environment, if you are rolling a table space forward
to a point in time, you do not have to supply the list of nodes (database
partitions) on which the table space resides. DB2® submits the rollforward
request to all partitions. This means the table space must be restored on all
database partitions on which the table space resides.

In a partitioned database environment, if you are rolling a table space forward
to the end of the logs, you must supply the list of database partitions if you do
not want to roll the table space forward on all partitions. If you want to roll
all table spaces (on all partitions) that are in rollforward pending state

BACKUP
table space(s)

RESTORE
table space(s)

n archived logs
1 active log

n archived logs
1 active log

update update

Units of work Units of workall changes to
end of logs

ROLLFORWARD

Time

Media
error

Figure 5. Table Space Rollforward Recovery. There can be more than one active log in the case of
a long-running transaction.

Chapter 1. Developing a Good Backup and Recovery Strategy 27

forward to the end of the logs, you do not have to supply the list of database
partitions. By default, the database rollforward request is sent to all partitions.

Related concepts:

v “Understanding Recovery Logs” on page 34

Related reference:

v “ROLLFORWARD DATABASE” on page 134

Related samples:

v “dbrecov.out -- HOW TO RECOVER A DATABASE (C)”
v “dbrecov.sqc -- How to recover a database (C)”
v “dbrecov.out -- HOW TO RECOVER A DATABASE (C++)”
v “dbrecov.sqC -- How to recover a database (C++)”

Incremental Backup and Recovery

As the size of databases, and particularly warehouses, continues to expand
into the terabyte and petabyte range, the time and hardware resources
required to back up and recover these databases is also growing substantially.
Full database and table space backups are not always the best approach when
dealing with large databases, because the storage requirements for multiple
copies of such databases are enormous. Consider the following issues:
v When a small percentage of the data in a warehouse changes, it should not

be necessary to back up the entire database.
v Appending table spaces to existing databases and then taking only table

space backups is risky, because there is no guarantee that nothing outside
of the backed up table spaces has changed between table space backups.

DB2® now supports incremental backup and recovery (but not of long field or
large object data). An incremental backup is a backup image that contains only
pages that have been updated since the previous backup was taken. In
addition to updated data and index pages, each incremental backup image
also contains all of the initial database meta-data (such as database
configuration, table space definitions, database history, and so on) that is
normally stored in full backup images.

Two types of incremental backup are supported:
v Incremental. An incremental backup image is a copy of all database data that

has changed since the most recent, successful, full backup operation. This is
also known as a cumulative backup image, because a series of incremental
backups taken over time will each have the contents of the previous

28 Data Recovery and High Availability Guide and Reference

incremental backup image. The predecessor of an incremental backup
image is always the most recent successful full backup of the same object.

v Delta. A delta, or incremental delta, backup image is a copy of all database
data that has changed since the last successful backup (full, incremental, or
delta) of the table space in question. This is also known as a differential, or
non-cumulative, backup image. The predecessor of a delta backup image is
the most recent successful backup containing a copy of each of the table
spaces in the delta backup image.

The key difference between incremental and delta backup images is their
behavior when successive backups are taken of an object that is continually
changing over time. Each successive incremental image contains the entire
contents of the previous incremental image, plus any data that has changed,
or is new, since the previous full backup was produced. Delta backup images
contain only the pages that have changed since the previous image of any
type was produced.

Combinations of database and table space incremental backups are permitted,
in both online and offline modes of operation. Be careful when planning your
backup strategy, because combining database and table space incremental
backups implies that the predecessor of a database backup (or a table space
backup of multiple table spaces) is not necessarily a single image, but could
be a unique set of previous database and table space backups taken at
different times.

To rebuild the database or the table space to a consistent state, the recovery
process must begin with a consistent image of the entire object (database or
table space) to be restored, and must then apply each of the appropriate
incremental backup images in the order described below.

To enable the tracking of database updates, DB2 supports a new database
configuration parameter, trackmod, which can have one of two accepted
values:
v NO. Incremental backup is not permitted with this configuration. Database

page updates are not tracked or recorded in any way. This is the default
value.

v YES. Incremental backup is permitted with this configuration. When update
tracking is enabled, the change becomes effective at the first successful
connection to the database. Before an incremental backup can be taken on a
particular table space, a full backup of that table space is necessary.

For SMS and DMS table spaces, the granularity of this tracking is at the table
space level. In table space level tracking, a flag for each table space indicates

Chapter 1. Developing a Good Backup and Recovery Strategy 29

whether or not there are pages in that table space that need to be backed up.
If no pages in a table space need to be backed up, the backup operation can
skip that table space altogether.

Although minimal, the tracking of updates to the database can have an
impact on the runtime performance of transactions that update or insert data.

Related tasks:

v “Restoring from Incremental Backup Images” on page 30

Incremental Backup and Recovery - Details

Restoring from Incremental Backup Images

Procedure:

A restore operation from incremental backup images always consists of the
following steps:
1. Identifying the incremental target image.

Determine the final image to be restored, and request an incremental
restore operation from the DB2 restore utility. This image is known as the
target image of the incremental restore, because it will be the last image to
be restored. The incremental target image is specified using the TAKEN AT
parameter in the RESTORE DATABASE command.

2. Restoring the most recent full database or table space image to establish a
baseline against which each of the subsequent incremental backup images
can be applied.

3. Restoring each of the required full or table space incremental backup
images, in the order in which they were produced, on top of the baseline
image restored in Step 2.

4. Repeating Step 3 until the target image from Step 1 is read a second time.
The target image is accessed twice during a complete incremental restore
operation. During the first access, only initial data is read from the image;
none of the user data is read. The complete image is read and processed
only during the second access.
The target image of the incremental restore operation must be accessed
twice to ensure that the database is initially configured with the correct
history, database configuration, and table space definitions for the database
that will be created during the restore operation. In cases where a table
space has been dropped since the initial full database backup image was
taken, the table space data for that image will be read from the backup
images but ignored during incremental restore processing.

There are two ways to restore incremental backup images.

30 Data Recovery and High Availability Guide and Reference

v For a manual incremental restore, the RESTORE command must be issued
once for each backup image that needs to be restored (as outlined in the
steps above).

v For an automatic incremental restore, the RESTORE command is issued
only once specifying the target image to be used. DB2 then uses the
database history to determine the remaining required backup images and
restores them.

Manual Incremental Restore Example

To restore a set of incremental backup images, using manual incremental
restore, specify the target image using the TAKEN AT timestamp option of the
RESTORE DATABASE command and follow the steps outlined above. For
example:

1. db2 restore database sample incremental taken at <ts>

where:
<ts> points to the last incremental backup image (the target image)
to be restored

2. db2 restore database sample incremental taken at <ts1>

where:
<ts1> points to the initial full database (or table space) image

3. db2 restore database sample incremental taken at <tsX>

where:
<tsX> points to each incremental backup image in creation sequence

4. Repeat Step 3, restoring each incremental backup image up to and
including image <ts>

If you are using manual incremental restore for a database restore operation,
and table space backup images have been produced, the table space images
must be restored in the chronological order of their backup time stamps.

If you want to use manual incremental restore, the db2ckrst utility can be
used to query the database history and generate a list of backup image time
stamps needed for an incremental restore. A simplified restore syntax for a
manual incremental restore is also generated. It is recommended that you
keep a complete record of backups, and only use this utility as a guide.

Automatic Incremental Restore Example

Chapter 1. Developing a Good Backup and Recovery Strategy 31

To restore a set of incremental backup images using automatic incremental
restore, specify the TAKEN AT timestamp option on the RESTORE
DATABASE command. Use the time stamp for the last image that you want to
restore. For example:

db2 restore db sample incremental automatic taken at 20001228152133

This will result in the DB2 restore utility performing each of the steps
described at the beginning of this section automatically. During the initial
phase of processing, the backup image with time stamp 20001228152133 is
read, and the restore utility verifies that the database, its history, and the table
space definitions exist and are valid.

During the second phase of processing, the database history is queried to
build a chain of backup images required to perform the requested restore
operation. If, for some reason this is not possible, and DB2 is unable to build
a complete chain of required images, the restore operation terminates, and an
error message is returned. In this case, an automatic incremental restore will
not be possible, and you will have issue the RESTORE DATABASE command
with the INCREMENTAL ABORT option. This will cleanup any remaining
resources so that you can proceed with a manual incremental restore.

Note: It is highly recommended that you not use the FORCE option of the
PRUNE HISTORY command. The default operation of this command
prevents you from deleting history entries that may be required for
recovery from the most recent, full database backup image, but with
the FORCE option, it is possible to delete entries that are required for
an automatic restore operation.

During the third phase of processing, DB2 will restore each of the remaining
backup images in the generated chain. If an error occurs during this phase,
you will have to issue the RESTORE DATABASE command with the
INCREMENTAL ABORT option to cleanup any remaining resources. You will
then have to determine if the error can be resolved before you re-issue the
RESTORE command or attempt the manual incremental restore again.

Related concepts:

v “Incremental Backup and Recovery” on page 28

Related reference:

v “RESTORE DATABASE” on page 95
v “db2ckrst - Check Incremental Restore Image Sequence” on page 216

Limitations to Automatic Incremental Restore
1. If a table space name has been changed since the backup operation you

want to restore from, and you use the new name when you issue a table

32 Data Recovery and High Availability Guide and Reference

level restore operation, the required chain of backup images from the
database history will not be generated correctly and an error will occur
(SQL2571N).
Example:
db2 backup db sample —> <ts1>
db2 backup db sample incremental —> <ts2>
db2 rename tablespace from userspace1 to t1
db2 restore db sample tablespace (’t1’) incremental automatic taken
at <ts2>

SQL2571N Automatic incremental restore is unable to proceed.
Reason code: "3".

Suggested workaround: Use manual incremental restore.
2. If you drop a database, the database history will be deleted. If you restore

the dropped database, the database history will be restored to its state at
the time of the restored backup and all history entries after that time will
be lost. If you then attempt to perform an automatic incremental restore
that would need to use any of these lost history entries, the RESTORE
utility will attempt to restore an incorrect chain of backups and will return
an ″out of sequence″ error (SQL2572N).
Example:
db2 backup db sample —> <ts1>
db2 backup db sample incremental —> <ts2>
db2 backup db sample incremental delta —> <ts3>
db2 backup db sample incremental delta —> <ts4>
db2 drop db sample
db2 restore db sample incremental automatic taken at <ts2>
db2 restore db sample incremental automatic taken at <ts4>

Suggested workarounds:
v Use manual incremental restore.
v Restore the history file first from image <ts4> before issuing an

automatic incremental restore.
3. If you restore a backup image from one database into another database

and then do an incremental (delta) backup, you can no longer use
automatic incremental restore to restore this backup image.
Example:
db2 create db a
db2 create db b

db2 update db cfg for a using trackmod on

db2 backup db a —> ts1
db2 restore db a taken at ts1 into b

db2 backup db b incremental —> ts2

Chapter 1. Developing a Good Backup and Recovery Strategy 33

db2 restore db b incremental automatic taken at ts2

SQL2542N No match for a database image file was found based on the source
database alias "B" and timestamp "ts1" provided.

Suggested workaround:
v Use manual incremental restore as follows:

db2 restore db b incremental taken at ts2
db2 restore db a incremental taken at ts1 into b
db2 restore db b incremental taken at ts2

v After the manual restore operation into database B, issue a full database
backup to start a new incremental chain

Related concepts:

v “Incremental Backup and Recovery” on page 28

Related tasks:

v “Restoring from Incremental Backup Images” on page 30

Related reference:

v “RESTORE DATABASE” on page 95

Understanding Recovery Logs

All databases have logs associated with them. These logs keep records of
database changes. If a database needs to be restored to a point beyond the last
full, offline backup, logs are required to roll the data forward to the point of
failure.

There are two types of DB2® logging: circular, and archive, each provides a
different level of recovery capability:
v Circular logging is the default behavior when a new database is created.

(The logretain and userexit database configuration parameters are set to NO.) With
this type of logging, only full, offline backups of the database are allowed.
The database must be offline (inaccessible to users) when a full backup is
taken. As the name suggests, circular logging uses a “ring” of online logs to
provide recovery from transaction failures and system crashes. The logs are
used and retained only to the point of ensuring the integrity of current
transactions. Circular logging does not allow you to roll a database forward
through transactions performed after the last full backup operation. All
changes occurring since the last backup operation are lost. Since this type of
restore operation recovers your data to the specific point in time at which a
full backup was taken, it is called version recovery.

34 Data Recovery and High Availability Guide and Reference

Figure 6 shows that the active log uses a ring of log files when circular
logging is active.

Active logs are used during crash recovery to prevent a failure (system
power or application error) from leaving a database in an inconsistent state.
The RESTART DATABASE command uses the active logs, if needed, to
move the database to a consistent and usable state. During crash recovery,
yet uncommitted changes recorded in these logs are rolled back. Changes
that were committed but not yet written from memory (the buffer pool) to
disk (database containers) are redone. These actions ensure the integrity of
the database. Active logs are located in the database log path directory.

v Archive logging is used specifically for rollforward recovery. Enabling the
logretain and/or the userexit database configuration parameter will result in
archive logging. To archive logs, you can choose to have DB2 leave the log
files in the active path and then manually archive them, or you can install a
user exit program to automate the archiving. Archived logs are logs that
were active but are no longer required for crash recovery.

The advantage of choosing archive logging is that rollforward recovery can
use both archived logs and active logs to rebuild a database either to the end
of the logs, or to a specific point in time. The archived log files can be used to
recover changes made after the backup was taken. This is different from
circular logging where you can only recover to the time of the backup, and all
changes made after that are lost.

DB2 server

Database Log Path

Transaction

Active Log Files

Circular Logs

Active

Log File

Figure 6. Circular Logging

Chapter 1. Developing a Good Backup and Recovery Strategy 35

Taking online backups is only supported if the database is configured for
archive logging. During an online backup operation, all activities against the
database are logged. When an online backup image is restored, the logs must
be rolled forward at least to the point in time at which the backup operation
completed. For this to happen, the logs must have been archived and made
available when the database is restored. After an online backup is complete,
DB2 forces the currently active log to be closed, and as a result, it will be
archived. This ensures that your online backup has a complete set of archived
logs available for recovery.

Two database configuration parameters allow you to change where archived
logs are stored: The newlogpath parameter, and the userexit parameter.
Changing the newlogpath parameter also affects where active logs are stored.

To determine which log extents in the database log path directory are archived
logs, check the value of the loghead database configuration parameter. This
parameter indicates the lowest numbered log that is active. Those logs with
sequence numbers less than loghead are archived logs and can be moved. You
can check the value of this parameter by using the Control Center; or, by
using the command line processor and the GET DATABASE
CONFIGURATION command to view the ″First active log file″. For more
information about this configuration parameter, see the Administration Guide:
Performance book.

Related concepts:

v “Log Mirroring” on page 37

TIME

Units of work Units of work

update update

Logs are used between backups to track the changes to the databases.

BACKUP
database

n archived logs
1 active log

n archived logs
1 active log

Figure 7. Active and Archived Database Logs in Rollforward Recovery. There can be more than
one active log in the case of a long-running transaction.

36 Data Recovery and High Availability Guide and Reference

Related reference:

v Appendix G, “User Exit for Database Recovery” on page 323
v “First Active Log File configuration parameter - loghead” in the

Administration Guide: Performance

Recovery Log Details

Log Mirroring

DB2® supports log mirroring at the database level. Mirroring log files helps
protect a database from:
v Accidental deletion of an active log
v Data corruption caused by hardware failure

If you are concerned that your active logs may be damaged (as a result of a
disk crash), you should consider using a new DB2 configuration parameter,
MIRRORLOGPATH, to specify a secondary path for the database to manage
copies of the active log, mirroring the volumes on which the logs are stored.

The MIRRORLOGPATH configuration parameter allows the database to write
an identical second copy of log files to a different path. It is recommended
that you place the secondary log path on a physically separate disk
(preferably one that is also on a different disk controller). That way, the disk
controller cannot be a single point of failure.

When MIRRORLOGPATH is first enabled, it will not actually be used until
the next database startup. This is similar to the NEWLOGPATH configuration
parameter.

If there is an error writing to either the active log path or the mirror log path,
the database will mark the failing path as “bad”, write a message to the
administration notification log, and write subsequent log records to the
remaining “good” log path only. DB2 will not attempt to use the “bad” path
again until the current log file is completed. When DB2 needs to open the
next log file, it will verify that this path is valid, and if so, will begin to use it.
If not, DB2 will not attempt to use the path again until the next log file is
accessed for the first time. There is no attempt to synchronize the log paths,
but DB2 keeps information about access errors that occur, so that the correct
paths are used when log files are archived. If a failure occurs while writing to
the remaining “good” path, the database shuts down.

Related reference:

v “Mirror Log Path configuration parameter - mirrorlogpath” in the
Administration Guide: Performance

Chapter 1. Developing a Good Backup and Recovery Strategy 37

Reducing Logging with the NOT LOGGED INITIALLY Parameter

If your application creates and populates work tables from master tables, and
you are not concerned about the recoverability of these work tables because
they can be easily recreated from the master tables, you may want to create
the work tables specifying the NOT LOGGED INITIALLY parameter on the
CREATE TABLE statement. The advantage of using the NOT LOGGED
INITIALLY parameter is that any changes made on the table (including insert,
delete, update, or create index operations) in the same unit of work that
creates the table will not be logged. This not only reduces the logging that is
done, but may also increase the performance of your application. You can
achieve the same result for existing tables by using the ALTER TABLE
statement with the NOT LOGGED INITIALLY parameter.

Notes:

1. You can create more than one table with the NOT LOGGED INITIALLY
parameter in the same unit of work.

2. Changes to the catalog tables and other user tables are still logged.

Because changes to the table are not logged, you should consider the
following when deciding to use the NOT LOGGED INITIALLY table attribute:
v All changes to the table will be flushed out to disk at commit time. This

means that the commit may take longer.
v If the NOT LOGGED INITIALLY attribute is activated and an activity

occurs that is not logged, the entire unit of work will be rolled back if a
statement fails or a ROLLBACK TO SAVEPOINT is executed (SQL1476N).

v You cannot recover these tables when rolling forward. If the rollforward
operation encounters a table that was created or altered with the NOT
LOGGED INITIALLY option, the table is marked as unavailable. After the
database is recovered, any attempt to access the table returns SQL1477N.

Note: When a table is created, row locks are held on the catalog tables until
a COMMIT is done. To take advantage of the no logging behavior,
you must populate the table in the same unit of work in which it is
created. This has implications for concurrency.

Reducing Logging with Declared Temporary Tables
If you plan to use declared temporary tables as work tables, note the
following:
v Declared temporary tables are not created in the catalogs; therefore locks

are not held.
v Logging is not performed against declared temporary tables, even after the

first COMMIT.
v Use the ON COMMIT PRESERVE option to keep the rows in the table after

a COMMIT; otherwise, all rows will be deleted.

38 Data Recovery and High Availability Guide and Reference

v Only the application that creates the declared temporary table can access
that instance of the table.

v The table is implicitly dropped when the application connection to the
database is dropped.

v Errors in operation during a unit of work using a declared temporary table
do not cause the unit of work to be completely rolled back. However, an
error in operation in a statement changing the contents of a declared
temporary table will delete all the rows in that table. A rollback of the unit
of work (or a savepoint) will delete all rows in declared temporary tables
that were modified in that unit of work (or savepoint).

Related concepts:

v “Application processes, concurrency, and recovery” in the SQL Reference,
Volume 1

Related tasks:

v “Creating a table space” in the Administration Guide: Implementation

Related reference:

v “DECLARE GLOBAL TEMPORARY TABLE statement” in the SQL
Reference, Volume 2

Configuration Parameters for Database Logging

Primary logs (logprimary)
This parameter specifies the number of primary logs of size logfilsz
that will be created.

A primary log, whether empty or full, requires the same amount of
disk space. Thus, if you configure more logs than you need, you use
disk space unnecessarily. If you configure too few logs, you can
encounter a log-full condition. As you select the number of logs to
configure, you must consider the size you make each log and whether
your application can handle a log-full condition. The total log file size
limit on active log space is 256 GB.

If you are enabling an existing database for rollforward recovery,
change the number of primary logs to the sum of the number of
primary and secondary logs, plus 1. Additional information is logged
for LONG VARCHAR and LOB fields in a database enabled for
rollforward recovery.

Secondary logs (logsecond)
This parameter specifies the number of secondary log files that are
created and used for recovery, if needed.

If the primary log files become full, secondary log files (of size
logfilsiz) are allocated, one at a time as needed, up to the maximum

Chapter 1. Developing a Good Backup and Recovery Strategy 39

number specified by this parameter. If this parameter is set to -1, the
database is configured with infinite active log space. There is no limit
on the size or number of in-flight transactions running on the
database.

Notes:

1. The userexit database configuration parameter must be enabled in
order to set logsecond parameter to -1.

2. If this parameter is set to -1, crash recovery time may be increased
since DB2 may need to retrieve archived log files.

Log file size (logfilsiz)
This parameter specifies the size of each configured log, in number of
4-KB pages.

There is a 256-GB logical limit on the total active log space that you
can configure. This limit is the result of the upper limit on logfilsiz,
which is 262144, and the upper limit on (logprimary + logsecond), which
is 256.

The size of the log file has a direct bearing on performance. There is a
performance cost for switching from one log to another. So, from a
pure performance perspective, the larger the log file size the better.
This parameter also indicates the log file size for archiving. In this
case, a larger log file is size it not necessarily better, since a larger log
file size may increase the chance of failure or cause a delay in log
shipping scenarios. When considering active log space, it may be
better to have a larger number of smaller log files. For example, if
there are 2 very large log files and a transaction starts close to the end
of one log file, only half of the log space remains available.

Every time a database is deactivated (all connections to the database
are terminated), the log file that is currently being written is
truncated. So, if a database is frequently being deactivated, it is better
not to choose a large log file size because DB2 will create a large file
only to have it truncated. You can use the ACTIVATE DATABASE
command to avoid this cost, and having the buffer pool primed will
also help with performance.

Assuming that you have an application that keeps the database open
to minimize processing time when opening the database, the log file
size should be determined by the amount of time it takes to make
offline archived log copies.

Minimizing log file loss is also an important consideration when
setting the log size. Archiving takes an entire log. If you use a single
large log, you increase the time between archiving. If the medium
containing the log fails, some transaction information will probably be
lost. Decreasing the log size increases the frequency of archiving but

40 Data Recovery and High Availability Guide and Reference

can reduce the amount of information loss in case of a media failure
since the smaller logs before the one lost can be used.

Log Buffer (logbufsz)
This parameter allows you to specify the amount of memory to use as
a buffer for log records before writing these records to disk. The log
records are written to disk when any one of the following events
occurs:
v A transaction commits
v The log buffer becomes full
v Some other internal database manager event occurs.

Increasing the log buffer size results in more efficient input/output
(I/O) activity associated with logging, because the log records are
written to disk less frequently, and more records are written each
time.

Number of Commits to Group (mincommit)
This parameter allows you to delay the writing of log records to disk
until a minimum number of commits have been performed. This
delay can help reduce the database manager overhead associated with
writing log records and, as a result, improve performance when you
have multiple applications running against a database, and many
commits are requested by the applications within a very short period
of time.

The grouping of commits occurs only if the value of this parameter is
greater than 1, and if the number of applications connected to the
database is greater than the value of this parameter. When commit
grouping is in effect, application commit requests are held until either
one second has elapsed, or the number of commit requests equals the
value of this parameter.

New log path (newlogpath)
The database logs are initially created in SQLOGDIR, which is a
subdirectory of the database directory. You can change the location in
which active logs and future archived logs are placed by changing the
value of this configuration parameter to point to a different directory
or to a device. Active logs that are currently stored in the database log
path directory are not moved to the new location if the database is
configured for rollforward recovery.

Because you can change the log path location, the logs needed for
rollforward recovery may exist in different directories or on different
devices. You can change the value of this configuration parameter
during a rollforward operation to allow you to access logs in multiple
locations.

Chapter 1. Developing a Good Backup and Recovery Strategy 41

You must keep track of the location of the logs.

Changes are not applied until the database is in a consistent state. The
configuration parameter database_consistent returns the status of the
database.

Mirror log path (mirrorlogpath)
To protect the logs on the primary log path from disk failure or
accidental deletion, you can specify that an identical set of logs be
maintained on a secondary (mirror) log path. To do this, change the
value of this configuration parameter to point to a different directory.
Active logs that are currently stored in the mirrored log path directory
are not moved to the new location if the database is configured for
rollforward recovery.

Because you can change the log path location, the logs needed for
rollforward recovery may exist in different directories. You can change
the value of this configuration parameter during a rollforward
operation to allow you to access logs in multiple locations.

You must keep track of the location of the logs.

Changes are not applied until the database is in a consistent state. The
configuration parameter database_consistent returns the status of the
database.

To turn this configuration parameter off, set its value to DEFAULT.

Notes:

1. This configuration parameter is not supported if the primary log
path is a raw device.

2. The value specified for this parameter cannot be a raw device.

Log retain (logretain)
If logretain is set to RECOVERY, archived logs are kept in the database
log path directory, and the database is considered to be recoverable,
meaning that rollforward recovery is enabled.

User exit (userexit)
This parameter causes the database manager to call a user exit
program for archiving and retrieving logs. The log files are archived
in a location that is different from the active log path. If userexit is set
to ON, rollforward recovery is enabled.

The data transfer speed of the device you use to store offline archived
logs, and the software used to make the copies, must at a minimum
match the average rate at which the database manager writes data in
the logs. If the transfer speed cannot keep up with new log data being
generated, you may run out of disk space if logging activity continues
for a sufficiently long period of time. The amount of time it takes to

42 Data Recovery and High Availability Guide and Reference

run out of disk space is determined by the amount of free disk space.
If this happens, database processing stops.

The data transfer speed is most significant when using tape or an
optical medium. Some tape devices require the same amount of time
to copy a file, regardless of its size. You must determine the
capabilities of your archiving device.

Tape devices have other considerations. The frequency of the
archiving request is important. For example, if the time taken to
complete any copy operation is five minutes, the log should be large
enough to hold five minutes of log data during your peak work load.
The tape device may have design limits that restrict the number of
operations per day. These factors must be considered when you
determine the log size.

Note: This value must be set to ON to enable infinite active log space.

Note: The default values for the logretain and userexit database configuration
parameters do not support rollforward recovery, and must be changed
if you are going to use them.

Overflow log path (overflowlogpath)
This parameter can be used for several functions, depending on your
logging requirements. You can specify a location for DB2 to find log
files that are needed for a rollforward operation. It is similar to the
OVERFLOW LOG PATH option of the ROLLFORWARD command;
however, instead of specifying the OVERFLOW LOG PATH option for
every ROLLFORWARD command issued, you can set this
configuration parameter once. If both are used, the OVERFLOW LOG
PATH option will overwrite the overflowlogpath configuration
parameter for that rollforward operation.

If logsecond is set to -1, you can specify a directory for DB2 to store
active log files retrieved from the archive. (Active log files must be
retrieved for rollback operations if they are no longer in the active log
path).

If overflowlogpath is not specified, DB2 will retrieve the log files into
the active log path. By specifying this parameter you can provide
additional resource for DB2 to store the retrieved log files. The benefit
includes spreading the I/O cost to different disks, and allowing more
log files to be stored in the active log path.

For example, if you are using the db2ReadLog API for replication,
you can use overflowlogpath to specify a location for DB2 to search for
log files that are needed for this API. If the log file is not found (in
either the active log path or the overflow log path) and the database
is configured with userexit enabled, DB2 will retrieve the log file. You

Chapter 1. Developing a Good Backup and Recovery Strategy 43

can also use this parameter to specify a directory for DB2 to store the
retrieved log files. The benefit comes from reducing the I/O cost on
the active log path and allowing more log files to be stored in the
active log path.

If you have configured a raw device for the active log path,
overflowlogpath must be configured if you want to set logsecond to -1, or
if you want to use the db2ReadLog API.

To set overflowlogpath, specify a string of up to 242 bytes. The string
must point to a path name, and it must be a fully qualified path
name, not a relative path name. The path name must be a directory,
not a raw device.

Note: In a partitioned database environment, the node number is
automatically appended to the path. This is done to maintain
the uniqueness of the path in multiple logical node
configurations.

Block on log disk full (blk_log_dsk_ful)
This configuration parameter can be set to prevent disk full errors
from being generated when DB2 cannot create a new log file in the
active log path. Instead, DB2 will attempt to create the log file every
five minutes until it succeeds. After each attempt, DB2 will write a
message to the administration notification log. The only way to
confirm that your application is hanging because of a log disk full
condition is to monitor the administration notification log. Until the
log file is successfully created, any user application that attempts to
update table data will not be able to commit transactions. Read-only
queries may not be directly affected; however, if a query needs to
access data that is locked by an update request or a data page that is
fixed in the buffer pool by the updating application, read-only queries
will also appear to hang.

Setting blk_log_dsk_ful to YES causes applications to hang when DB2
encounters a log disk full error. You are then able to resolve the error
and the transaction can continue. A disk full situation can be resolved
by moving old log files to another file system, or by increasing the
size of the file system so that hanging applications can complete.

If blk_log_dsk_ful is set to NO, a transaction that receives a log disk
full error will fail and be rolled back. In some cases, the database will
come down if a transaction causes a log disk full error.

Related concepts:

v “Managing Log Files” on page 45
v “Enhancing Recovery Performance” on page 60

44 Data Recovery and High Availability Guide and Reference

Related reference:

v Appendix G, “User Exit for Database Recovery” on page 323
v “Number of Secondary Log Files configuration parameter - logsecond” in

the Administration Guide: Performance

v “Change the Database Log Path configuration parameter - newlogpath” in
the Administration Guide: Performance

Managing Log Files

Consider the following when managing database logs:
v The numbering scheme for archived logs starts with S0000000.LOG, and

continues through S9999999.LOG, accommodating a potential maximum of
10 million log files. The database manager resets to S0000000.LOG if:
– A database configuration file is changed to enable rollforward recovery
– A database configuration file is changed to disable rollforward recovery
– S9999999.LOG has been used.

DB2® reuses log names after restoring a database (with or without
rollforward recovery). The database manager ensures that an incorrect log is
not applied during rollforward recovery, but it cannot detect the location of
the required log. You must ensure that the correct logs are available for
rollforward recovery.

When a rollforward operation completes successfully, the last log that was
used is truncated, and logging begins with the next sequential log. Any log
in the log path directory with a sequence number greater than the last log
used for rollforward recovery is re-used. Any entries in the truncated log
following the truncation point are overwritten with zeros. Ensure that you
make a copy of the logs before invoking the rollforward utility. (You can
invoke a user exit program to copy the logs to another location.)

v If a database has not been activated (by way of the ACTIVATE DATABASE
command), DB2 truncates the current log file when all applications have
disconnected from the database. The next time an application connects to
the database, DB2 starts logging to a new log file. If many small log files
are being produced on your system, you may want to consider using the
ACTIVATE DATABASE command. This not only saves the overhead of
having to initialize the database when applications connect, it also saves the
overhead of having to allocate a large log file, truncate it, and then allocate
a new large log file.

v An archived log may be associated with two or more different log sequences
for a database, because log file names are reused (see Figure 8 on page 46).
For example, if you want to recover Backup 2, there are two possible log
sequences that could be used. If, during full database recovery, you roll
forward to a point in time and stop before reaching the end of the logs, you

Chapter 1. Developing a Good Backup and Recovery Strategy 45

have created a new log sequence. The two log sequences cannot be
combined. If you have an online backup image that spans the first log
sequence, you must use this log sequence to complete rollforward recovery.
If you have created a new log sequence after recovery, any table space
backup images on the old log sequence are invalid. This is usually
recognized at restore time, but the restore utility fails to recognize a table
space backup image on an old log sequence if a database restore operation
is immediately followed by the table space restore operation. Until the
database is actually rolled forward, the log sequence that is to be used is
unknown. If the table space is on an old log sequence, it must be “caught”
by the table space rollforward operation. A restore operation using an
invalid backup image may complete successfully, but the table space
rollforward operation for that table space will fail, and the table space will
be left in restore pending state.
For example, suppose that a table space-level backup operation, Backup 3,
completes between S0000013.LOG and S0000014.LOG in the top log sequence
(see Figure 8). If you want to restore and roll forward using the
database-level backup image, Backup 2, you will need to roll forward
through S0000012.LOG. After this, you could continue to roll forward
through either the top log sequence or the (newer) bottom log sequence. If
you roll forward through the bottom log sequence, you will not be able to
use the table space-level backup image, Backup 3, to perform table space
restore and rollforward recovery.
To complete a table space rollforward operation to the end of the logs using
the table space-level backup image, Backup 3, you will have to restore the
database-level backup image, Backup 2, and then roll forward using the top
log sequence. Once the table space-level backup image, Backup 3, has been
restored, you can initiate a rollforward operation to the end of the logs.

Related reference:

v Appendix G, “User Exit for Database Recovery” on page 323

Restore Backup 2
and Roll Forward to

end of log 12.

Backup 1

. . .

. . .

Backup 2 Backup 3

S0000010.LOG S0000011.LOG S0000012.LOG S0000013.LOG S0000014.LOG

S0000013.LOG S0000014.LOG

Figure 8. Re-using Log File Names

46 Data Recovery and High Availability Guide and Reference

Managing Log Files with a User Exit Program

The following considerations apply to calling a user exit program for
archiving and retrieving log files:
v The database configuration file parameter userexit specifies whether the

database manager invokes a user exit program to archive files or to retrieve
log files during rollforward recovery of databases. A request to retrieve a
log file is made when the rollforward utility needs a log file that is not
found in the log path directory.

Note: On Windows® operating systems, you cannot use a REXX user exit
to archive logs.

v When archiving, a log file is passed to the user exit when it is full, even if
the log file is still active and is needed for normal processing. This allows
copies of the data to be moved away from volatile media as quickly as
possible. The log file passed to the user exit is retained in the log path
directory until it is no longer needed for normal processing. At this point,
the disk space is reused.

v DB2® opens a log file in read mode when it starts a user exit program to
archive the file. On some platforms, this prevents the user exit program
from being able to delete the log file. Other platforms, like AIX, allow
processes, including the user exit program, to delete log files. A user exit
program should never delete a log file after it is archived, because the file
could still be active and needed for crash recovery. DB2 manages disk space
reuse when log files are archived.

v When a log file has been archived and is inactive, DB2 does not delete the
file but renames it as the next log file when such a file is needed. This
results in a performance gain, because creating a new log file (instead of
renaming the file) causes all pages to be written out to guarantee the disk
space. It is more efficient to reuse than to free up and then reacquire the
necessary pages on disk.

v DB2 will not invoke the user exit program to retrieve the log file during
crash recovery or rollback unless the logsecond database configuration
parameter is set to -1.

v A user exit program does not guarantee rollforward recovery to the point of
failure, but only attempts to make the failure window smaller. As log files
fill, they are queued for the user exit routine. Should the disk containing
the log fail before a log file is filled, the data in that log file is lost. Also,
since the files are queued for archiving, the disk can fail before all the files
are copied, causing any log files in the queue to be lost.

v The configured size of each individual log file has a direct bearing on the
user exit. If each log file is very large, a large amount of data can be lost if
a disk fails. A database configured with small log files causes the data to be
passed to the user exit routine more often.

Chapter 1. Developing a Good Backup and Recovery Strategy 47

However, if you are moving the data to a slower device such as tape, you
might want to have larger log files to prevent the queue from building up.
If the queue becomes full, archive and retrieve requests will not be
processed. Processing will resume when there is room on the queue.
Unprocessed requests will not be automatically requeued.

v An archive request to the user exit program occurs only if userexit is
configured, and each time an active log file is filled. It is possible that an
active log file is not full when the last disconnection from the database
occurs and the user exit program is also called for a partially filled active
log file.

Note: To free unused log space, the log file is truncated before it is
archived.

v A copy of the log should be made to another physical device so that the
offline log file can be used by rollforward recovery if the device containing
the log file experiences a media failure. This should not be the same device
containing database data files.

v If you have enabled user exit programs and are using a tape drive as a
storage device for logs and backup images, you need to ensure that the
destination for the backup images and the archived logs is not the same
tape drive. Since some log archiving may take place while a backup
operation is in progress, an error may occur when the two processes are
trying to write to the same tape drive at the same time.

v In some cases, if a database is closed before a positive response has been
received from a user exit program for an archive request, the database
manager will send another request when the database is opened. Thus, a
log file may be archived more than once.

v If a user exit program receives a request to archive a file that does not exist
(because there were multiple requests to archive and the file was deleted
after the first successful archiving operation), or to retrieve a file that does
not exist (because it is located in another directory or the end of the logs
has been reached), it should ignore this request and pass a successful return
code.

v The user exit program should allow for the existence of different log files
with the same name after a point in time recovery; it should be written to
preserve both log files and to associate those log files with the correct
recovery path.

v If a user exit program is enabled for two or more databases that are using
the same tape device to archive log files, and a rollforward operation is
taking place on one of the databases, the other database(s) should not be
active. If another database tries to archive a log file while the rollforward
operation is in progress, the logs required for the rollforward operation may
not be found or the new log file archived to the tape device might
overwrite the log files previously stored on that tape device.

48 Data Recovery and High Availability Guide and Reference

To prevent either situation from occurring, you can ensure that no other
databases on the node that calls the user exit program are open during the
rollforward operation, or write a user exit program to handle this situation.

Related concepts:

v “Managing Log Files” on page 45

Log File Allocation and Removal

Log files in the database log directory are never removed if they may be
required for crash recovery. When the userexit database configuration
parameter is enabled, a full log file becomes a candidate for removal only
after it is no longer required for crash recovery. A log file which is required
for crash recovery is called an active log. A log file which is not required for
crash recovery is called an archived log.

The process of allocating new log files and removing old log files is
dependent on the settings of userexit and logretain database configuration
parameters:

Both logretain and userexit are set to OFF
Circular logging will be used. Rollforward recovery is not supported
with circular logging, while crash recovery is.

During circular logging, new log files, other than secondary logs, are
not generated and old log files are not deleted. Log files are handled
in a circular fashion. That is, when the last log file is full, DB2® begins
writing to the first log file.

A log full situation can occur if all of the log files are active and the
circular logging process cannot wrap to the first log file. Secondary
log files are created when all the primary log files are active and full.
Once a secondary log is created, it is not deleted until the database is
restarted.

Logretain is set to ON and userexit is set to OFF
Both rollforward recovery and crash recovery are enabled. The
database is known to be recoverable. When userexit is set to OFF, DB2
does not delete log files from the database log directory. Each time a
log file becomes full, DB2 begins writing records to another log file,
and (if the maximum number of primary and secondary logs has not
been reached) creates a new log file.

Userexit is set to ON
When both logretain and userexit are set to on, both rollforward
recovery and crash recovery are enabled. When a log file becomes full,
it is automatically archived using the user supplied user exit program.

Chapter 1. Developing a Good Backup and Recovery Strategy 49

Log files are usually not deleted. Instead, when a new log file is
required and one is not available, an archived log file is renamed and
used again. An archived log file, is not deleted or renamed once it has
been closed and copied to the log archive directory. DB2 waits until a
new log file is needed and then renames the oldest archived log. A log
file that has been moved to the database directory during recovery is
removed during the recovery process when it is no longer needed.
Until DB2 runs out of log space, you will see old log files in the
database directory.

If an error is encountered while archiving a log file, archiving of log files will
be suspended for five minutes before being attempted again. DB2 will then
continue archiving log files as they become full. Log files that became full
during the five minute waiting period will not be archived immediately after
the delay, DB2 will spread the archive of these files over time.

The easiest way to remove old log files is to restart the database. Once the
database is restarted, only new log files and log files that the user exit
program failed to archive will be found in the database directory.

When a database is restarted, the minimum number of logs in the database
log directory will equal the number of primary logs which can be configured
using the logprimary database configuration parameter. It is possible for more
than the number of primary logs to be found in the log directory. This can
occur if the number of empty logs in the log directory at the time the
database was shut down, is greater than the value of the logprimary
configuration parameter at the time the database is restarted. This will happen
if the value of the logprimary configuration parameter is changed between the
database being shut down and restarted, or if secondary logs are allocated
and never used.

When a database is restarted, if the number of empty logs is less than the
number of primary logs specified by the logprimary configuration parameter,
additional log files will be allocated to make up the difference. If there are
more empty logs than primary logs available in the database directory, the
database can be restarted with as many available empty logs as are found in
the database directory. After database shutdown, secondary log files that have
been created will remain in the active log path when the database is restarted.

Blocking Transactions When the Log Directory File is Full

The blk_log_dsk_ful database configuration parameter can be set to prevent
″disk full″ errors from being generated when DB2® cannot create a new log
file in the active log path.

50 Data Recovery and High Availability Guide and Reference

Instead, DB2 attempts to create the log file every five minutes until it
succeeds. If the database is configured with the userexit parameter set to ON,
DB2 also checks for the completion of log file archiving. If an archived log file
is archived successfully, DB2 can rename the inactive log file to the new log
file name and continue. After each attempt, DB2 writes a message to the
administration notification log. The only way that you can confirm that your
application is hanging because of a log disk full condition is to monitor the
administration notification log.

Until the log file is successfully created, any user application that attempts to
update table data will not able to commit transactions. Read-only queries may
not be directly affected; however, if a query needs to access data that is locked
by an update request, or a data page that is fixed in the buffer pool by the
updating application, read-only queries will also appear to hang.

Related concepts:

v “Understanding Recovery Logs” on page 34
v “Managing Log Files with a User Exit Program” on page 47

On Demand Log Archive

DB2® now supports the closing (and, if the user exit option is enabled, the
archiving) of the active log for a recoverable database at any time. This allows
you to collect a complete set of log files up to a known point, and then to use
these log files to update a standby database.

You can initiate on demand log archiving by invoking the ARCHIVE LOG
command, or by calling the db2ArchiveLog API.

Related reference:

v “ARCHIVE LOG” on page 225
v “db2ArchiveLog - Archive Active Log” in the Administrative API Reference

Using Raw Logs
You can use a raw device for your database log. There are both advantages
and disadvantages in doing so.
v The advantages are:

– You can attach more than 26 physical drives to a system.
– The file I/O path length is shorter. This may improve performance on

your system. You should conduct benchmarks to evaluate if there are
measurable benefits for your work load.

v The disadvantages are:
– The device cannot be shared by other applications; the entire device must

be assigned to DB2.

Chapter 1. Developing a Good Backup and Recovery Strategy 51

– The device cannot be operated upon by any operating system utility or
third-party tool which would backup or copy from the device.

– You can easily wipe out the file system on an existing drive if you
specify the wrong physical drive number.

You can configure a raw log with the newlogpath database configuration
parameter. Before doing so, however, consider the advantages and
disadvantages listed above, and the additional considerations listed below:
v Only one device is allowed. You can define the device over multiple disks

at the operating system level. DB2® will make an operating system call to
determine the size of the device in 4-KB pages.
If you use multiple disks, this will provide a larger device, and the striping
that results can improve performance by faster I/O throughput.

v DB2 will attempt to write to the last 4-KB page of the device. If the device
size is greater than 2 GB, the attempt to write to the last page will fail on
operating systems that do not provide support for devices larger than 2 GB.
In this situation, DB2 will attempt to use all pages, up to the supported
limit.
Information about the size of the device is used to indicate the size of the
device (in 4-KB pages) available to DB2 under the support of the operating
system. The amount of disk space that DB2 can write to is referred to as the
device-size-available.
The first 4-KB page of the device is not used by DB2 (this space is generally
used by operating system for other purposes.) This means that the total
space available to DB2 is device-size = device-size-available - 1.

v The logsecond parameter is not used. DB2 will not allocate secondary logs.
The size of active log space is the number of 4-KB pages that result from
logprimary x logfilsiz.

v Log records are still grouped into log extents, each with a log file size
(logfilsiz) of 4-KB pages. Log extents are placed in the raw device, one after
another. Each extent also consists of an extra two pages for the extent
header. This means that the number of available log extents the device can
support is device-size / (logfilsiz + 2)

v The device must be large enough to support the active log space. That is,
the number of available log extents must be greater than (or equal to) the
value specified for the logprimary configuration parameter. If the userexit
configuration parameter is enabled, ensure that the raw device can contain
more logs than the value specified for the logprimary configuration
parameter. This will compensate for the delay incurred when the user exit
program is archiving a log file.

v If you are using circular logging, the logprimary configuration parameter
will determine the number of log extents that are written to the device. This
may result in unused space on the device.

52 Data Recovery and High Availability Guide and Reference

v If you are using log retention (logretain) without a user exit program, after
the number of available log extents are all used up, all operations that result in
an update will receive a log full error. At this time, you must shut down
the database and take an offline backup of it to ensure recoverability. After
the database backup operation, the log records written to the device are
lost. This means that you cannot use an earlier database backup image to
restore the database, then roll it forward. If you take a database backup
before the number of available log extents are all used up, you can restore and
roll the database forward.

v If you are using log retention (logretain) with a user exit program, the user
exit program is called for each log extent as it is filled with log records. The
user exit program must be able to read the device, and to store the archived
log as a file. DB2 will not call a user exit program to retrieve log files to a
raw device. Instead, during rollforward recovery, DB2 will read the extent
headers to determine if the raw device contains the required log file. If the
required log file is not found in the raw device, DB2 will search the
overflow log path. If the log file is still not found, DB2 will call the user
exit program to retrieve the log file into the overflow log path. If you do
not specify an overflow log path for the rollforward operation, DB2 will not
call the user exit program to retrieve the log file.

v If you have configured a raw device for logging, and are using
DataPropagator™ (DPROP), or another application that calls the
db2ReadLog API, the overflowlogpath database configuration parameter
must be configured. DB2 may call a user exit program to retrieve the log
file and return the log data requested by the db2ReadLog API. The
retrieved log file will be placed in the path specified by the overflowlogpath
database configuration parameter.

Related tasks:

v “Specifying raw I/O” in the Administration Guide: Implementation

Related reference:

v “db2ReadLog - Asynchronous Read Log” on page 263
v Appendix F, “Tivoli Storage Manager” on page 319

How to Prevent Losing Log Files

In situations where you need to drop a database or perform a point-in-time
rollforward recovery, it is possible to lose log files that may be required for
future recovery operations. In these cases, it is important to make copies of all
the logs in the current database log path directory. Consider the following
scenarios:
v If you plan to drop a database prior to a restore operation, you need to

save the log files in the active log path before issuing the DROP
DATABASE command. After the database has been restored, these log files

Chapter 1. Developing a Good Backup and Recovery Strategy 53

may be required for rollforward recovery because some of them may not
have been archived before the database was dropped. Normally, you are
not required to drop a database prior to issuing the RESTORE command.
However, you may have to drop the database (or drop the database on one
partition by specifying the AT NODE option of DROP DATABASE
command), because it has been damaged to the extent that the RESTORE
command fails. You may also decide to drop a database prior to the restore
operation to give yourself a fresh start.

v If you are rolling a database forward to a specific point in time, log data
after the time stamp you specify will be overwritten. If, after you have
completed the point-in-time rollforward operation and reconnected to the
database, you determine that you actually needed to roll the database
forward to a later point in time, you will not be able to because the logs
will already have been overwritten. It is possible that the original set of log
files may have been archived; however, DB2® may be calling a user exit
program to automatically archive the newly generated log files. Depending
on how the user exit program is written, this could cause the original set of
log files in the archive log directory to be overwritten. Even if both the
original and new set of log files exist in the archive log directory (as
different versions of the same files), you may have to determine which set
of logs should be used for future recovery operations.

Related concepts:

v “Understanding Recovery Logs” on page 34

Understanding the Recovery History File

A recovery history file is created with each database and is automatically
updated whenever:
v A database or table spaces are backed up
v A database or table spaces are restored
v A database or table spaces are rolled forward
v A table space is created
v A table space is altered
v A table space is quiesced
v A table space is renamed
v A table space is dropped
v A table is loaded
v A table is dropped
v A table is reorganized

54 Data Recovery and High Availability Guide and Reference

You can use the summarized backup information in this file to recover all or
part of a database to a given point in time. The information in the file
includes:
v An identification (ID) field to uniquely identify each entry
v The part of the database that was copied and how
v The time the copy was made
v The location of the copy (stating both the device information and the logical

way to access the copy)
v The last time a restore operation was done
v The time at which a table space was renamed, showing the previous and

the current name of the table space
v The status of a backup operation: active, inactive, expired, or deleted
v The last log sequence number saved by the database backup or processed

during a rollforward recovery operation.

To see the entries in the recovery history file, use the LIST HISTORY
command.

Every backup operation (database, table space, or incremental) includes a
copy of the recovery history file. The recovery history file is linked to the
database. Dropping a database deletes the recovery history file. Restoring a
database to a new location restores the recovery history file. Restoring does
not overwrite the existing history recovery file unless the file that exists on
disk has no entries. If that is the case, the database history will be restored
from the backup image.

If the current database is unusable or not available, and the associated
recovery history file is damaged or deleted, an option on the RESTORE
command allows only the recovery history file to be restored. The recovery
history file can then be reviewed to provide information on which backup to
use to restore the database.

CREATE
database

BACKUP
database

BACKUP
database

TIME

BACKUP
database

RESTORE
database

RHF is the Recovery History File

RHF

create

RHF

update

RHF

update

RHF

update

RHF

update

ROLLFORWARD

changes in logs
Units of workUnits of work Units of work

RHF

update

Figure 9. Creating and Updating the Recovery History File

Chapter 1. Developing a Good Backup and Recovery Strategy 55

The size of the file is controlled by the rec_his_retentn configuration parameter
that specifies a retention period (in days) for the entries in the file. Even if the
number for this parameter is set to zero (0), the most recent full database
backup (plus its restore set) is kept. (The only way to remove this copy is to
use the PRUNE with FORCE option.) The retention period has a default value
of 366 days. The period can be set to an indefinite number of days by using
-1. In this case, explicit pruning of the file is required.

Related reference:

v “Recovery History Retention Period configuration parameter -
rec_his_retentn” in the Administration Guide: Performance

v “LIST HISTORY” on page 228

Recovery History File - Garbage Collection

Garbage Collection

Although you can use the PRUNE HISTORY command at any time to remove
entries from the history file, it is recommended that such pruning be left to
DB2. The number of DB2® database backups recorded in the recovery history
file is monitored automatically by DB2 garbage collection. DB2 garbage
collection is invoked:
v After a full, non-incremental database backup operation completes

successfully.
v After a database restore operation, where a rollforward operation is not

required, completes successfully.
v After a successful database rollforward operation completes successfully.

The configuration parameter num_db_backups defines how many active full
(non-incremental) database backup images are kept. The value of this
parameter is used to scan the history file, starting with the last entry.

After every full (non-incremental) database backup operation, the
rec_his_retentn configuration parameter is used to prune expired entries from
the history file.

An active database backup is one that can be restored and rolled forward using
the current logs to recover the current state of the database. An inactive
database backup is one that, if restored, moves the database back to a previous
state.

56 Data Recovery and High Availability Guide and Reference

All active database backup images that are no longer needed are marked as
“expired”. These images are considered to be unnecessary, because more
recent backup images are available. All table space backup images and load
backup copies that were taken before the database backup image expired are
also marked as “expired”.

All database backup images that are marked as “inactive” and that were taken
prior to the point at which an expired database backup was taken are also
marked as “expired”. All associated inactive table space backup images and
load backup copies are also marked as “expired”.

If an active database backup image is restored, but it is not the most recent
database backup recorded in the history file, any subsequent database backup
images belonging to the same log sequence are marked as “inactive”.

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

d2 d4d1 d3 LS1

t1 t4t3t2

Figure 10. Active Database Backups. The value of num_db_backups has been set to four.

d2 d4d1 d3

RS1 d5 d6

LS1

LS2

t1 t3t2

t5

t4

t7t6

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 11. Inactive Database Backups

Chapter 1. Developing a Good Backup and Recovery Strategy 57

If an inactive database backup image is restored, any inactive database
backups belonging to the current log sequence are marked as “active” again.
All active database backup images that are no longer in the current log
sequence are marked as “inactive”.

DB2 garbage collection is also responsible for marking the history file entries
for a DB2 database or table space backup image as “inactive”, if that backup
does not correspond to the current log sequence, also called the current log
chain. The current log sequence is determined by the DB2 database backup
image that has been restored, and the log files that have been processed. Once
a database backup image is restored, all subsequent database backup images
become “inactive”, because the restored image begins a new log chain. (This is
true if the backup image was restored without rolling forward. If a
rollforward operation has occurred, all database backups that were taken after
the break in the log chain are marked as “inactive”. It is conceivable that an
older database backup image will have to be restored because the rollforward
utility has gone through the log sequence containing a damaged current
backup image.)

A table space-level backup image becomes “inactive” if, after it is restored, the
current state of the database cannot be reached by applying the current log
sequence.

If a backup image contains DATALINK columns, all Data Links servers
running the DB2 Data Links Manager are contacted to request garbage
collection. DB2 garbage collection then deletes backups of the associated Data
Links server files that were contained in the expired backup, but that were
unlinked before the next database backup operation.

d2 d4d1 d3 LS1

t1 t4t3t2

d5

t5

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 12. Expired Database Backups

58 Data Recovery and High Availability Guide and Reference

Related concepts:

v “Understanding the Recovery History File” on page 54

Related reference:

v “PRUNE HISTORY/LOGFILE” on page 231

Understanding Table Space States

The current status of a table space is reflected by its state. The table space
states most commonly associated with recovery are:
v Rollforward pending. A table space is put in this state after it is restored, or

following an input/output (I/O) error. After it is restored, the table space

d2 d4d1 d3 LS1

RS1 d5 d6 LS2

t1 t3t2

t5

t4

t7t6 t8

d7

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 13. Mixed Active, Inactive, and Expired Database Backups

d2 d4d1 d3 LS1

RS1
d5 d6 LS2

t1 t3t2

t5

t4

t7t6 t8

d7

t10t9

d9d8

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 14. Expired Log Sequence

Chapter 1. Developing a Good Backup and Recovery Strategy 59

can be rolled forward to the end of the logs or to a point in time. Following
an I/O error, the table space must be rolled forward to the end of the logs.

v Rollforward-in-progress. A table space is put in this state when a rollforward
operation on that table space is in progress. Once the rollforward operation
completes successfully, the table space is no longer in rollforward-in-
progress state. The table space can also be taken out of this state if the
rollforward operation is cancelled.

v Restore pending. A table space is put in this state if a rollforward operation
on that table space is cancelled, or if a rollforward operation on that table
space encounters an unrecoverable error, in which case the table space must
be restored and rolled forward again.

v Backup pending. A table space is put in this state after a point-in-time
rollforward operation, or after a load operation with the no copy option.
The table space must be backed up before it can be used. (If it is not backed
up, the table space cannot be updated, but read only operations are
allowed.)

Enhancing Recovery Performance

The following should be considered when thinking about recovery
performance:
v You can improve performance for databases that are frequently updated by

placing the logs on a separate device. In the case of an online transaction
processing (OLTP) environment, often more I/O is needed to write data to
the logs than to store a row of data. Placing the logs on a separate device
will minimize the disk arm movement that is required to move between a
log and the database files.
You should also consider what other files are on the disk. For example,
moving the logs to the disk used for system paging in a system that has
insufficient real memory will defeat your tuning efforts.

v To reduce the amount of time required to complete a restore operation:
– Adjust the restore buffer size. The buffer size must be a multiple of the

buffer size that was used during the backup operation.
– Increase the number of buffers.

If you use multiple buffers and I/O media devices, you should use at
least twice as many buffers as media devices to ensure that they do not
have to wait for data. The size of the buffers used will also contribute to
the performance of the restore operation. The ideal restore buffer size
should be a multiple of the extent size for the table spaces.
If you have multiple table spaces with different extent sizes, specify a
value that is a multiple of the largest extent size.

60 Data Recovery and High Availability Guide and Reference

The minimum recommended number of buffers is the number of media
devices plus the number specified for the PARALLELISM option.

– Use multiple source devices.
– Set the PARALLELISM option for the restore operation to be at least one

(1) greater than the number of source devices.
v If a table contains large amounts of long field and LOB data, restoring it

could be very time consuming. If the database is enabled for rollforward
recovery, the RESTORE command provides the capability to restore selected
table spaces. If the long field and LOB data is critical to your business,
restoring these table spaces should be considered against the time required
to complete the backup task for these table spaces. By storing long field and
LOB data in separate table spaces, the time required to complete the restore
operation can be reduced by choosing not to restore the table spaces
containing the long field and LOB data. If the LOB data can be reproduced
from a separate source, choose the NOT LOGGED option when creating or
altering a table to include LOB columns. If you choose not to restore the
table spaces that contain long field and LOB data, but you need to restore
the table spaces that contain the table, you must roll forward to the end of
the logs so that all table spaces that contain table data are consistent.

Note: If you back up a table space that contains table data without the
associated long or LOB fields, you cannot perform point-in-time
rollforward recovery on that table space. All the table spaces for a
table must be rolled forward simultaneously to the same point in
time.

v The following apply for both backup and restore operations:
– Multiple I/O buffers and devices should be used.
– Allocate at least twice as many buffers as devices being used.
– Do not overload the I/O device controller bandwidth.
– Use more buffers of smaller size rather than a few large buffers.
– Tune the number and the size of the buffers according to the system

resources.
– Use of the PARALLELISM option

Enhancing Recovery Performance - Parallel Recovery

Parallel Recovery

DB2® uses multiple agents to perform both crash recovery and database
rollforward recovery. You can expect better performance during these
operations, particularly on symmetric multi-processor (SMP) machines; using
multiple agents during database recovery takes advantage of the extra CPUs
that are available on SMP machines.

Chapter 1. Developing a Good Backup and Recovery Strategy 61

The agent type introduced by parallel recovery is db2agnsc. DB2 chooses the
number of agents to be used for database recovery based on the number of
CPUs on the machine.

DB2 distributes log records to these agents so that they can be reapplied
concurrently, where appropriate. For example, the processing of log records
associated with insert, delete, update, add key, and delete key operations can
be parallelized in this way. Because the log records are parallelized at the
page level (log records on the same data page are processed by the same
agent), performance is enhanced, even if all the work was done on one table.

Related concepts:

v “Enhancing Recovery Performance” on page 60

62 Data Recovery and High Availability Guide and Reference

Chapter 2. Database Backup

This section describes the DB2 UDB backup utility, which is used to create
backup copies of a database or table spaces.

The following topics are covered:
v “Backup Overview”
v “Privileges, Authorities, and Authorization Required to Use Backup” on

page 66
v “Using Backup” on page 67
v “Backing Up to Tape” on page 69
v “Backing Up to Named Pipes” on page 71
v “BACKUP DATABASE” on page 72
v “db2Backup - Backup database” on page 77
v “Backup Sessions - CLP Examples” on page 84
v “Optimizing Backup Performance” on page 85

Backup Overview

The simplest form of the DB2® BACKUP DATABASE command requires only
that you specify the alias name of the database that you want to back up. For
example:

db2 backup db sample

If the command completes successfully, you will have acquired a new backup
image that is located in the path or the directory from which the command
was issued. It is located in this directory because the command in this
example does not explicitly specify a target location for the backup image. On
Windows® operating systems, for example, this command (when issued from
the root directory) creates an image that appears in a directory listing as
follows:
Directory of D:\SAMPLE.0\DB2\NODE0000\CATN0000\20010320

03/20/2001 12:26p <DIR> .
03/20/2001 12:26p <DIR> ..
03/20/2001 12:27p 12,615,680 122644.001

Note: If the DB2 client and server are not located on the same system, the
default target directory for the backup image is the current working

© Copyright IBM Corp. 2001, 2002 63

directory on the client system where the command was issued. This
target directory or device must exist on the server system.

Backup images are created at the target location that you have the option to
specify when you invoke the backup utility. This location can be:
v A directory (for backups to disk or diskette)
v A device (for backups to tape)
v A Tivoli® Storage Manager (TSM) server
v Another vendor’s server

The recovery history file is updated automatically with summary information
whenever you invoke a database backup operation. This file is created in the
same directory as the database configuration file.

On UNIX® based systems, file names for backup images created on disk
consist of a concatenation of several elements, separated by periods:

DB_alias.Type.Inst_name.NODEnnnn.CATNnnnn.timestamp.Seq_num

For example:
STAFF.0.DB201.NODE0000.CATN0000.19950922120112.001

On Windows operating systems, a four-level subdirectory tree is used:
DB_alias.Type\Inst_name\NODEnnnn\CATNnnnn\yyyymmdd\hhmmss.Seq_num

For example:
SAMPLE.0\DB2\NODE0000\CATN0000\20010320\122644.001

Database alias A 1- to 8-character database alias name that
was specified when the backup utility was
invoked.

Type Type of backup operation, where: 0 represents
a full database-level backup, 3 represents a
table space-level backup, and 4 represents a
backup image generated by the LOAD...COPY
TO command.

Instance name A 1- to 8-character name of the current
instance that is taken from the
DB2INSTANCE environment variable.

Node number The node number. In non-partitioned database
systems, this is always NODE0000. In
partitioned database systems, it is NODExxxx,
where xxxx is the number assigned to the
node in the db2nodes.cfg file.

64 Data Recovery and High Availability Guide and Reference

Catalog node number The node number of the catalog node for the
database. In non-partitioned database systems,
this is always CATN0000. In partitioned
database systems, it is CATNxxxx, where xxxx is
the number assigned to the node in the
db2nodes.cfg file.

Time stamp A 14-character representation of the date and
time at which the backup operation was
performed. The time stamp is in the form
yyyymmddhhnnss, where:
v yyyy represents the year (1995 to 9999)
v mm represents the month (01 to 12)
v dd represents the day of the month (01 to

31)
v hh represents the hour (00 to 23)
v nn represents the minutes (00 to 59)
v ss represents the seconds (00 to 59)

Sequence number A 3-digit number used as a file extension.

When a backup image is written to tape:
v File names are not created, but the information described above is stored in

the backup header for verification purposes.
v A tape device must be available through the standard operating system

interface. On a large partitioned database system, however, it may not be
practical to have a tape device dedicated to each database partition server.
You can connect the tape devices to one or more TSM servers, so that access
to these tape devices is provided to each database partition server.

v On a partitioned database system, you can also use products that provide
virtual tape device functions, such as REELlibrarian 4.2 or CLIO/S. You can
use these products to access the tape device connected to other nodes
(database partition servers) through a pseudo tape device. Access to the
remote tape device is provided transparently, and the pseudo tape device
can be accessed through the standard operating system interface.

You cannot back up a database that is in an unusable state, except when that
database is in backup pending state. If any table space is in an abnormal state,
you cannot back up the database or that table space, unless it is in backup
pending state.

If a database or a table space is in a partially restored state because a system
crash occurred during the restore operation, you must successfully restore the
database or the table space before you can back it up.

Chapter 2. Database Backup 65

A backup operation will fail if a list of the table spaces to be backed up
contains the name of a temporary table space.

The backup utility provides concurrency control for multiple processes that
are making backup copies of different databases. This concurrency control
keeps the backup target devices open until all the backup operations have
ended. If an error occurs during a backup operation, and an open container
cannot be closed, other backup operations targeting the same drive may
receive access errors. To correct such access errors, you must terminate the
backup operation that caused the error and disconnect from the target device.
If you are using the backup utility for concurrent backup operations to tape,
ensure that the processes do not target the same tape.

Displaying Backup Information
You can use db2ckbkp to display information about existing backup images.
This utility allows you to:
v Test the integrity of a backup image and determine whether or not it can be

restored.
v Display information that is stored in the backup header.
v Display information about the objects and the log file header in the backup

image.

Related concepts:

v “Understanding the Recovery History File” on page 54

Related reference:

v “db2ckbkp - Check Backup” on page 213
v Appendix F, “Tivoli Storage Manager” on page 319

Privileges, Authorities, and Authorization Required to Use Backup

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects
for which they have the appropriate authorization; that is, the required
privilege or authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the
backup utility.

66 Data Recovery and High Availability Guide and Reference

Using Backup

Prerequisites:

You should not be connected to the database that is to be backed up: the
backup utility automatically establishes a connection to the specified database,
and this connection is terminated at the completion of the backup operation.

The database can be local or remote. The backup image remains on the
database server, unless you are using a storage management product such as
Tivoli Storage Manager (TSM).

On a partitioned database system, database partitions are backed up
individually. The operation is local to the database partition server on which
you invoke the utility. You can, however, issue db2_all from one of the
database partition servers in the instance to invoke the backup utility on a list
of servers, which you identify by node number. (Use the LIST NODES
command to identify the nodes, or database partition servers, that have user
tables on them.) If you do this, you must back up the catalog node first, then
back up the other database partitions. You can also use the Command Center
to back up database partitions. Because this approach does not support
rollforward recovery, back up the database residing on these nodes regularly.
You should also keep a copy of the db2nodes.cfg file with any backup copies
you take, as protection against possible damage to this file.

On a distributed request system, backup operations apply to the distributed
request database and the metadata stored in the database catalog (wrappers,
servers, nicknames, and so on). Data source objects (tables and views) are not
backed up, unless they are stored in the distributed request database.

If a database was created with a previous release of the database manager,
and the database has not been migrated, you must migrate the database
before you can back it up.

Restrictions:

The following restrictions apply to the backup utility:
v A table space backup operation and a table space restore operation cannot

be run at the same time, even if different table spaces are involved.
v If you want to be able to do rollforward recovery in a partitioned database

environment, you must regularly back up the database on the list of nodes,
and you must have at least one backup image of the rest of the nodes in
the system (even those that do not contain user data for that database). Two
situations require the backed-up image of a database partition at a database
partition server that does not contain user data for the database:

Chapter 2. Database Backup 67

– You added a database partition server to the database system after
taking the last backup, and you need to do forward recovery on this
database partition server.

– Point-in-time recovery is used, which requires that all database partitions
in the system are in rollforward pending state.

Procedure:

The backup utility can be invoked through the command line processor (CLP),
the Backup Database notebook or Wizard in the Control Center, or the
db2Backup application programming interface (API).

Following is an example of the BACKUP DATABASE command issued
through the CLP:

db2 backup database sample to c:\DB2Backups

To open the Backup Database notebook or wizard:
1. From the Control Center, expand the object tree until you find the

Databases folder.
2. Click on the Databases folder. Any existing databases are displayed in the

pane on the right side of the window (the contents pane).
3. Click the right mouse button on the database you want in the contents

pane, and select Backup Database or Backup Database Using Wizard from
the pop-up menu. The Backup Database notebook or the Backup Database
wizard opens.

Detailed information is provided through the online help facility within the
Control Center.

Related concepts:

v “Administrative APIs in Embedded SQL or DB2 CLI Programs” in the
Application Development Guide: Programming Client Applications

v “Introducing the plug-in architecture for the Control Center” in the
Administration Guide: Implementation

Related tasks:

v “Migrating databases” in the Quick Beginnings for DB2 Servers

Related reference:

v “LIST DBPARTITIONNUMS” in the Command Reference

v “db2Backup - Backup database” on page 77

68 Data Recovery and High Availability Guide and Reference

Backing Up to Tape

When you back up your database or table space, you must correctly set your
block size and your buffer size. This is particularly true if you are using a
variable block size (on AIX, for example, if the block size has been set to
zero).

There is a restriction on the number of fixed block sizes that can be used
when backing up. This restriction exists because DB2® writes out the backup
image header as a 4-KB block. The only fixed block sizes DB2 supports are
512, 1024, 2048, and 4096 bytes. If you are using a fixed block size, you can
specify any backup buffer size. However, you may find that your backup
operation will not complete successfully if the fixed block size is not one of
the sizes that DB2 supports.

If your database is large, using a fixed block size means that your backup
operations will take a long time. You may want to consider using a variable
block size.

Note: Use of a variable block size is currently not supported. If you must use
this option, ensure that you have well tested procedures in place that
enable you to recover successfully, using backup images that were
created with a variable block size.

When using a variable block size, you must specify a backup buffer size that
is less than or equal to the maximum limit for the tape devices that you are
using. For optimal performance, the buffer size must be equal to the
maximum block size limit of the device being used.

Before a tape device can be used on a Windows® operating system, the
following command must be issued:

db2 initialize tape on <device> using <blksize>

Where:

<device>
is a valid tape device name. The default on Windows operating
systems is \\.\TAPE0.

<blksize>
is the blocking factor for the tape. It must be a factor or multiple of
4096. The default value is the default block size for the device.

Restoring from a backup image with variable block size may return an error.
If this happens, you may need to rewrite the image using an appropriate
block size. Following is an example on AIX:

Chapter 2. Database Backup 69

tcl -b 0 -Bn -f /dev/rmt0 read > backup_filename.file
dd if=backup_filename.file of=/dev/rmt0/ obs=4096 conv=sync

The backup image is dumped to a file called backup_filenam.file. The dd
command dumps the image back onto tape, using a block size of 4096.

There is a problem with this approach if the image is too large to dump to a
file. One possible solution is to use the dd command to dump the image from
one tape device to another. This will work as long as the image does not span
more than one tape. When using two tape devices, the dd command is:

dd if=/dev/rmt1 of=/dev/rmt0 obs=4096

If using two tape devices is not possible, you may be able to dump the image
to a raw device using the dd command, and then to dump the image from the
raw device to tape. The problem with this approach is that the dd command
must keep track of the number of blocks dumped to the raw device. This
number must be specified when the image is moved back to tape. If the dd
command is used to dump the image from the raw device to tape, the
command dumps the entire contents of the raw device to tape. The dd utility
cannot determine how much of the raw device is used to hold the image.

When using the backup utility, you will need to know the maximum block
size limit for your tape devices. Here are some examples:

Device Attachment Block Size Limit DB2 Buffer Size
Limit (in 4-KB
pages)

8 mm scsi 131,072 32

3420 s370 65,536 16

3480 s370 65,536 16

3490 s370 65,536 16

3490E s370 65,536 16

7332 (4 mm)1 scsi 262,144 64

3490e scsi 262,144 64

35902 scsi 2,097,152 512

3570 (magstar MP) 262,144 64

Notes:

1. The 7332 does not implement a block size limit. 256 KB is simply a
suggested value. Block size limit is imposed by the parent adapter.

2. While the 3590 does support a 2-MB block size, you could experiment
with lower values (like 256 KB), provided the performance is adequate for
your needs.

70 Data Recovery and High Availability Guide and Reference

3. For information about your device limit, check your device documentation
or consult with the device vendor.

Backing Up to Named Pipes

Support is now available for database backup to (and database restore from)
local named pipes on UNIX based systems.

Prerequisites:

Both the writer and the reader of the named pipe must be on the same
machine. The pipe must exist and be located on a local file system. Because
the named pipe is treated as a local device, there is no need to specify that the
target is a named pipe.

Procedure:

Following is an AIX example:
1. Create a named pipe:

mkfifo /u/dmcinnis/mypipe

2. Use this pipe as the target for a database backup operation:
db2 backup db sample to /u/dmcinnis/mypipe

3. If this backup image is going to be used by the restore utility, the restore
operation must be invoked before the backup operation, so that it will not
miss any data:

db2 restore db sample into mynewdb from /u/dmcinnis/mypipe

Related tasks:

v “Using Backup” on page 67

Related reference:

v “BACKUP DATABASE” on page 72
v “RESTORE DATABASE” on page 95

Chapter 2. Database Backup 71

BACKUP DATABASE

Creates a backup copy of a database or a table space.

Scope:

This command only affects the database partition on which it is executed.

Authorization:

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection:

Database. This command automatically establishes a connection to the
specified database.

Note: If a connection to the specified database already exists, that connection
will be terminated and a new connection established specifically for the
backup operation. The connection is terminated at the completion of
the backup operation.

Command syntax:

II BACKUP DATABASE database-alias
DB USER username

USING password

I

I

K

,

TABLESPACE (tablespace-name)

ONLINE INCREMENTAL
DELTA

I

BACKUP DATABASE

72 Data Recovery and High Availability Guide and Reference

I

K

USE TSM
XBSA OPEN num-sessions SESSIONS

,

TO dir
dev

LOAD library-name
OPEN num-sessions SESSIONS

I

I
WITH num-buffers BUFFERS BUFFER buffer-size PARALLELISM n

I

I
WITHOUT PROMPTING

IM

Command parameters:

DATABASE database-alias
Specifies the alias of the database to back up.

USER username
Identifies the user name under which to back up the database.

USING password
The password used to authenticate the user name. If the password is
omitted, the user is prompted to enter it.

TABLESPACE tablespace-name
A list of names used to specify the table spaces to be backed up.

ONLINE
Specifies online backup. The default is offline backup. Online backups
are only available for databases configured with logretain or userexit
enabled.

Note: An online backup operation may time out if there is an IX lock
on sysibm.systables, because the DB2 backup utility requires
an S lock on objects containing LOBs.

INCREMENTAL
Specifies a cumulative (incremental) backup image. An incremental
backup image is a copy of all database data that has changed since
the most recent successful, full backup operation.

DELTA
Specifies a non-cumulative (delta) backup image. A delta backup
image is a copy of all database data that has changed since the most
recent successful backup operation of any type.

BACKUP DATABASE

Chapter 2. Database Backup 73

USE TSM
Specifies that the backup is to use Tivoli Storage Manager (formerly
ADSM) output.

OPEN num-sessions SESSIONS
The number of I/O sessions to be created between DB2 and TSM or
another backup vendor product.

Note: This parameter has no effect when backing up to tape, disk, or
other local device.

USE XBSA
Specifies that the XBSA interface is to be used. Backup Services APIs
(XBSA) are an open application programming interface for
applications or facilities needing data storage management for backup
or archiving purposes. Legato NetWorker is a storage manager that
currently supports the XBSA interface.

TO dir/dev
A list of directory or tape device names. The full path on which the
directory resides must be specified. If USE TSM, TO, and LOAD are
omitted, the default target directory for the backup image is the
current working directory of the client computer. This target directory
or device must exist on the database server. This parameter may be
repeated to specify the target directories and devices that the backup
image will span. If more than one target is specified (target1, target2,
and target3, for example), target1 will be opened first. The media
header and special files (including the configuration file, table space
table, and history file) are placed in target1. All remaining targets are
opened, and are then used in parallel during the backup operation.
Because there is no general tape support on Windows operating
systems, each type of tape device requires a unique device driver. To
back up to the FAT file system on Windows operating systems, users
must conform to the 8.3 naming restriction.

Use of tape devices or floppy disks may generate messages and
prompts for user input. Valid response options are:

c Continue. Continue using the device that generated the
warning message (for example, when a new tape has been
mounted)

d Device terminate. Stop using only the device that generated
the warning message (for example, when there are no more
tapes)

t Terminate. Abort the backup operation.

BACKUP DATABASE

74 Data Recovery and High Availability Guide and Reference

If the tape system does not support the ability to uniquely reference a
backup image, it is recommended that multiple backup copies of the
same database not be kept on the same tape.

LOAD library-name
The name of the shared library (DLL on Windows operating systems)
containing the vendor backup and restore I/O functions to be used. It
can contain the full path. If the full path is not given, it will default to
the path on which the user exit program resides.

WITH num-buffers BUFFERS
The number of buffers to be used. The default is 2. However, when
creating a backup to multiple locations, a larger number of buffers
may be used to improve performance.

BUFFER buffer-size
The size, in 4-KB pages, of the buffer used when building the backup
image. The minimum value for this parameter is 8 pages; the default
value is 1024 pages. If a buffer size of zero is specified, the value of
the database manager configuration parameter backbufsz will be used
as the buffer allocation size.

If using tape with variable block size, reduce the buffer size to within
the range that the tape device supports.. Otherwise, the backup
operation may succeed, but the resulting image may not be
recoverable.

When using tape devices on SCO UnixWare 7, specify a buffer size of
16.

With most versions of Linux, using DB2’s default buffer size for
backup operations to a SCSI tape device results in error SQL2025N,
reason code 75. To prevent the overflow of Linux internal SCSI
buffers, use this formula:

bufferpages <= ST_MAX_BUFFERS * ST_BUFFER_BLOCKS / 4

where bufferpages is the value of either backbufsz or restbufsz, and
ST_MAX_BUFFERS and ST_BUFFER_BLOCKS are defined in the Linux kernel
under the drivers/scsi directory.

PARALLELISM n
Determines the number of table spaces which can be read in parallel
by the backup utility. The default value is 1.

WITHOUT PROMPTING
Specifies that the backup will run unattended, and that any actions
which normally require user intervention will return an error
message.

Examples:

BACKUP DATABASE

Chapter 2. Database Backup 75

In the following example, the database WSDB is defined on all 4 partitions,
numbered 0 through 3. The path /dev3/backup is accessible from all
partitions. Partition 0 is the catalog partition, and needs to be backed-up
separately since this is an offline backup. To perform an offline backup of all
the WSDB database partitions to /dev3/backup, issue the following
commands from one of the database partitions:

db2_all ’<<+0< db2 BACKUP DATABASE wsdb TO /dev3/backup’
db2_all ’|<<-0< db2 BACKUP DATABASE wsdb TO /dev3/backup’

In the second command, the db2_all utility will issue the same backup
command to each database partition in turn (except partition 0). All four
database partition backup images will be stored in the /dev3/backup
directory.

In the following example database SAMPLE is backed up to a TSM server
using two concurrent TSM client sessions. The backup utility will use four
buffers which are the default buffer size (1024 x 4K pages).

db2 backup database sample use tsm open 2 sessions with 4 buffers

In the next example, a tablespace level backup of tablespaces (syscatspace,
userspace1) of database payroll is done to tapes.

db2 backup database payroll tablespace (syscatspace, userspace1) to
/dev/rmt0, /dev/rmt1 with 8 buffers without prompting

Following is a sample weekly incremental backup strategy for a recoverable
database. It includes a weekly full database backup operation, a daily
non-cumulative (delta) backup operation, and a mid-week cumulative
(incremental) backup operation:

(Sun) db2 backup db sample use tsm
(Mon) db2 backup db sample online incremental delta use tsm
(Tue) db2 backup db sample online incremental delta use tsm
(Wed) db2 backup db sample online incremental use tsm
(Thu) db2 backup db sample online incremental delta use tsm
(Fri) db2 backup db sample online incremental delta use tsm
(Sat) db2 backup db sample online incremental use tsm

Related reference:

v “RESTORE DATABASE” on page 95
v “ROLLFORWARD DATABASE” on page 134

BACKUP DATABASE

76 Data Recovery and High Availability Guide and Reference

db2Backup - Backup database

Creates a backup copy of a database or a table space.

Scope:

This API only affects the database partition on which it is executed.

Authorization:

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection:

Database. This API automatically establishes a connection to the specified
database.

The connection will be terminated upon the completion of the backup.

API include file:

db2ApiDf.h

C API syntax:

db2Backup - Backup database

Chapter 2. Database Backup 77

Generic API syntax:

/* File: db2ApiDf.h */
/* API: db2Backup */
/* ... */
SQL_API_RC SQL_API_FN
db2Backup (

db2Uint32 versionNumber,
void *pDB2BackupStruct,
struct sqlca *pSqlca);

typedef SQL_STRUCTURE db2BackupStruct
{

char *piDBAlias;
char oApplicationId[SQLU_APPLID_LEN+1];
char oTimestamp[SQLU_TIME_STAMP_LEN+1];
struct db2TablespaceStruct *piTablespaceList;
struct db2MediaListStruct *piMediaList;
char *piUsername;
char *piPassword;
void *piVendorOptions;
db2Uint32 iVendorOptionsSize;
db2Uint32 oBackupSize;
db2Uint32 iCallerAction;
db2Uint32 iBufferSize;
db2Uint32 iNumBuffers;
db2Uint32 iParallelism;
db2Uint32 iOptions;

} db2BackupStruct;

typedef SQL_STRUCTURE db2TablespaceStruct
{

char **tablespaces;
db2Uint32 numTablespaces;

} db2TablespaceStruct;

typedef SQL_STRUCTURE db2MediaListStruct
{

char **locations;
db2Uint32 numLocations;
char locationType;

} db2MediaListStruct;
/* ... */

db2Backup - Backup database

78 Data Recovery and High Availability Guide and Reference

API parameters:

/* File: db2ApiDf.h */
/* API: db2Backup */
/* ... */
SQL_API_RC SQL_API_FN
db2gBackup (

db2Uint32 versionNumber,
void *pDB2gBackupStruct,
struct sqlca *pSqlca);

typedef SQL_STRUCTURE db2gBackupStruct
{

char *piDBAlias;
db2Uint32 iDBAliasLen;
char *poApplicationId;
db2Uint32 iApplicationIdLen;
char *poTimestamp;
db2Uint32 iTimestampLen;
struct db2gTablespaceStruct *piTablespaceList;
struct db2gMediaListStruct *piMediaList;
char *piUsername;
db2Uint32 iUsernameLen;
char *piPassword;
db2Uint32 iPasswordLen;
void *piVendorOptions;
db2Uint32 iVendorOptionsSize;
db2Uint32 oBackupSize;
db2Uint32 iCallerAction;
db2Uint32 iBufferSize;
db2Uint32 iNumBuffers;
db2Uint32 iParallelism;
db2Uint32 iOptions;

} db2gBackupStruct;

typedef SQL_STRUCTURE db2gTablespaceStruct
{

struct db2Char *tablespaces;
db2Uint32 numTablespaces;

} db2gTablespaceStruct;

typedef SQL_STRUCTURE db2gMediaListStruct
{

struct db2Char *locations;
db2Uint32 numLocations;
char locationType;

} db2gMediaListStruct;

typedef SQL_STRUCTURE db2Char
{

char *pioData;
db2Uint32 iLength;
db2Uint32 oLength;

} db2Char;
/* ... */

db2Backup - Backup database

Chapter 2. Database Backup 79

versionNumber
Input. Specifies the version and release level of the structure passed as
the second parameter pDB2BackupStruct.

pDB2BackupStruct
Input. A pointer to the db2BackupStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

piDBAlias
Input. A string containing the database alias (as cataloged in the
system database directory) of the database to back up.

iDBAliasLen
Input. A 4-byte unsigned integer representing the length in bytes of
the database alias.

oApplicationId
Output. The API will return a string identifying the agent servicing
the application. Can be used to obtain information about the progress
of the backup operation using the database monitor.

poApplicationId
Output. Supply a buffer of length SQLU_APPLID_LEN+1 (defined in
sqlutil). The API will return a string identifying the agent servicing
the application. Can be used to obtain information about the progress
of the backup operation using the database monitor.

iApplicationIdLen
Input. A 4-byte unsigned integer representing the length in bytes of
the poApplicationId buffer. Should be equal to SQLU_APPLID_LEN+1
(defined in sqlutil).

oTimestamp
Output. The API will return the time stamp of the backup image

poTimestamp
Output. Supply a buffer of length SQLU_TIME_STAMP_LEN+1
(defined in sqlutil). The API will return the time stamp of the
backup image.

iTimestampLen
Input. A 4-byte unsigned integer representing the length in bytes of
the poTimestamp buffer. Should be equal to
SQLU_TIME_STAMP_LEN+1 (defined in sqlutil).

piTablespaceList
Input. List of table spaces to be backed up. Required for table space
level backup only. Must be NULL for a database level backup. See
structure DB2TablespaceStruct.

db2Backup - Backup database

80 Data Recovery and High Availability Guide and Reference

piMediaList
Input. This structure allows the caller to specify the destination for the
backup operation. The information provided depends on the value of
the locationType field. The valid values for locationType (defined in
sqlutil.h) are:

SQLU_LOCAL_MEDIA
Local devices (a combination of tapes, disks, or diskettes).

SQLU_TSM_MEDIA
TSM. If the locations pointer is set to NULL, the TSM shared
library provided with DB2 is used. If a different version of the
TSM shared library is desired, use SQLU_OTHER_MEDIA
and provide the shared library name.

SQLU_OTHER_MEDIA
Vendor product. Provide the shared library name in the
locations field.

SQLU_USER_EXIT
User exit. No additional input is required (only available
when server is on OS/2).

For more information, see structure DB2MediaListStruct.

piUsername
Input. A string containing the user name to be used when attempting
a connection. Can be NULL.

iUsernameLen
Input. A 4-byte unsigned integer representing the length in bytes of
the user name. Set to zero if no user name is provided.

piPassword
Input. A string containing the password to be used with the user
name. Can be NULL.

iPasswordLen
Input. A 4-byte unsigned integer representing the length in bytes of
the password. Set to zero if no password is provided.

piVendorOptions
Input. Used to pass information from the application to the vendor
functions. This data structure must be flat; that is, no level of
indirection is supported. Note that byte-reversal is not done, and code
page is not checked for this data.

iVendorOptionsSize
Input. The length of the piVendorOptions field, which cannot exceed
65535 bytes.

db2Backup - Backup database

Chapter 2. Database Backup 81

oBackupSize
Output. Size of the backup image (in MB).

iCallerAction
Input. Specifies action to be taken. Valid values (defined in
db2ApiDf.h) are:

DB2BACKUP_BACKUP
Start the backup.

DB2BACKUP_NOINTERRUPT
Start the backup. Specifies that the backup will run
unattended, and that scenarios which normally require user
intervention will either be attempted without first returning to
the caller, or will generate an error. Use this caller action, for
example, if it is known that all of the media required for the
backup have been mounted, and utility prompts are not
desired.

DB2BACKUP_CONTINUE
Continue the backup after the user has performed some action
requested by the utility (mount a new tape, for example).

DB2BACKUP_TERMINATE
Terminate the backup after the user has failed to perform
some action requested by the utility.

DB2BACKUP_DEVICE_TERMINATE
Remove a particular device from the list of devices used by
backup. When a particular medium is full, backup will return
a warning to the caller (while continuing to process using the
remaining devices). Call backup again with this caller action
to remove the device which generated the warning from the
list of devices being used.

DB2BACKUP_PARM_CHK
Used to validate parameters without performing a backup.
This option does not terminate the database connection after
the call returns. After successful return of this call, it is
expected that the user will issue a call with
SQLUB_CONTINUE to proceed with the action.

DB2BACKUP_PARM_CHK_ONLY
Used to validate parameters without performing a backup.
Before this call returns, the database connection established by
this call is terminated, and no subsequent call is required.

iBufferSize
Input. Backup buffer size in 4KB allocation units (pages). Minimum is
8 units. The default is 1024 units.

db2Backup - Backup database

82 Data Recovery and High Availability Guide and Reference

iNumBuffers
Input. Specifies number of backup buffers to be used. Minimum is 2.
Maximum is limited by memory. Can specify 0 for the default value
of 2.

iParallelism
Input. Degree of parallelism (number of buffer manipulators).
Minimum is 1. Maximum is 1024. The default is 1.

iOptions
Input. A bitmap of backup properties. The options are to be combined
using the bitwise OR operator to produce a value for iOptions. Valid
values (defined in db2ApiDf.h) are:

DB2BACKUP_OFFLINE
Offline gives an exclusive connection to the database.

DB2BACKUP_ONLINE
Online allows database access by other applications while the
backup operation occurs.

Note: An online backup operation may appear to hang if
users are holding locks on SMS LOB data.

DB2BACKUP_DB
Full database backup.

DB2BACKUP_TABLESPACE
Table space level backup. For a table space level backup,
provide a list of table spaces in the piTablespaceList parameter.

DB2BACKUP_INCREMENTAL
Specifies a cumulative (incremental) backup image. An
incremental backup image is a copy of all database data that
has changed since the most recent successful, full backup
operation.

DB2BACKUP_DELTA
Specifies a noncumulative (delta) backup image. A delta
backup image is a copy of all database data that has changed
since the most recent successful backup operation of any type.

tablespaces
A pointer to the list of table spaces to be backed up. For C, the list is
null-terminated strings. In the generic case, it is a list of db2Char
structures.

numTablespaces
Number of entries in the tablespaces parameter.

db2Backup - Backup database

Chapter 2. Database Backup 83

locations
A pointer to the list of media locations. For C, the list is
null-terminated strings. In the generic case, it is a list of db2Char
structures.

numLocations
The number of entries in the locations parameter.

locationType
A character indicated the media type. Valid values (defined in
sqlutil.h.) are:

SQLU_LOCAL_MEDIA
Local devices (tapes, disks, diskettes, or named pipes).

SQLU_TSM_MEDIA
Tivoli Storage Manager.

SQLU_OTHER_MEDIA
Vendor library.

SQLU_USER_EXIT
User exit (only available when the server is on OS/2).

pioData
A pointer to the character data buffer.

iLength
Input. The size of the pioData buffer.

oLength
Output. Reserved for future use.

Related samples:

v “dbrecov.sqc -- How to recover a database (C)”
v “dbrecov.sqC -- How to recover a database (C++)”

Backup Sessions - CLP Examples

Example 1

In the following example database SAMPLE is backed up to a TSM server
using 2 concurrent TSM client sessions. The backup utility will use 4 buffers
which are the default buffer size (1024 x 4K pages).

db2 backup database sample use tsm open 2 sessions with 4 buffers

db2 backup database payroll tablespace (syscatspace, userspace1) to
/dev/rmt0, /dev/rmt1 with 8 buffers without prompting

Example 2

db2Backup - Backup database

84 Data Recovery and High Availability Guide and Reference

Following is a sample weekly incremental backup strategy for a recoverable
database. It includes a weekly full database backup operation, a daily
non-cumulative (delta) backup operation, and a mid-week cumulative
(incremental) backup operation:

(Sun) db2 backup db kdr use tsm
(Mon) db2 backup db kdr online incremental delta use tsm
(Tue) db2 backup db kdr online incremental delta use tsm
(Wed) db2 backup db kdr online incremental use tsm
(Thu) db2 backup db kdr online incremental delta use tsm
(Fri) db2 backup db kdr online incremental delta use tsm
(Sat) db2 backup db kdr online incremental use tsm

Example 3

To initiate a backup operation to a tape device in a Windows environment,
issue:

db2 backup database sample to \\.\tape0

Related tasks:

v “Using Backup” on page 67

Optimizing Backup Performance

To reduce the amount of time required to complete a backup operation:
v Specify table space backup.

You can back up (and subsequently recover) part of a database by using the
TABLESPACE option on the BACKUP DATABASE command. This
facilitates the management of table data, indexes, and long field or large
object (LOB) data in separate table spaces.

v Increase the value of the PARALLELISM parameter on the BACKUP
DATABASE command so that it reflects the number of table spaces being
backed up.
The PARALLELISM parameter defines the number of processes or threads
that are started when reading data from the database. Each process or
thread is assigned to a specific table space. When it finishes backing up this
table space, it requests another. Note, however, that each process or thread
requires both memory and CPU overhead: on a heavily loaded system,
keep the PARALLELISM parameter at its default value of 1.

v Increase the backup buffer size.
The ideal backup buffer size is a multiple of the table space extent size. If
you have multiple table spaces with different extent sizes, specify a value
that is a multiple of the largest extent size.

v Increase the number of buffers.

Chapter 2. Database Backup 85

If you use multiple buffers and I/O channels, you should use at least twice
as many buffers as channels to ensure that the channels do not have to wait
for data.

v Use multiple target devices.

Related concepts:

v “Backup Overview” on page 63

Related tasks:

v “Using Backup” on page 67

86 Data Recovery and High Availability Guide and Reference

Chapter 3. Database Restore

This section describes the DB2 UDB restore utility, which is used to rebuild
damaged or corrupted databases or table spaces that were previously backed
up.

The following topics are covered:
v “Restore Overview”
v “Privileges, Authorities, and Authorization Required to Use Restore” on

page 88
v “Using Restore” on page 89
v “Using Incremental Restore in a Test and Production Environment” on

page 90
v “Redefining Table Space Containers During a Restore Operation (Redirected

Restore)” on page 93
v “Restoring to an Existing Database” on page 94
v “Restoring to a New Database” on page 95
v “RESTORE DATABASE” on page 95
v “db2Restore - Restore database” on page 104
v “Restore Sessions - CLP Examples” on page 115

Restore Overview

The simplest form of the DB2® RESTORE DATABASE command requires only
that you specify the alias name of the database that you want to restore. For
example:

db2 restore db sample

In this example, because the SAMPLE database exists, the following message
is returned:
SQL2539W Warning! Restoring to an existing database that is the same as
the backup image database. The database files will be deleted.
Do you want to continue ? (y/n)

If you specify y, and a backup image for the SAMPLE database exists, the
restore operation should complete successfully.

A database restore operation requires an exclusive connection: that is, no
applications can be running against the database when the operation starts,

© Copyright IBM Corp. 2001, 2002 87

and the restore utility prevents other applications from accessing the database
until the restore operation completes successfully. A table space restore
operation, however, can be done online.

A table space is not usable until the restore operation (followed by rollforward
recovery) completes successfully.

If you have tables that span more than one table space, you should back up
and restore the set of table spaces together.

When doing a partial or subset restore operation, you can use either a table
space-level backup image, or a full database-level backup image and choose
one or more table spaces from that image. All the log files associated with
these table spaces from the time that the backup image was created must
exist.

Optimizing Restore Performance
To reduce the amount of time required to complete a restore operation:
v Increase the restore buffer size.

The restore buffer size must be a positive integer multiple of the backup
buffer size specified during the backup operation. If an incorrect buffer size
is specified, the buffers allocated will be the smallest acceptable size.

v Increase the number of buffers.
The value you specify must be a multiple of the number of pages that you
specified for the backup buffer. The minimum number of pages is 16.

v Increase the value of the PARALLELISM option.
This will increase the number of buffer manipulators (BM) that will be used
to write to the database during the restore operation. The default value is 1.

Privileges, Authorities, and Authorization Required to Use Restore

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects
for which they have the appropriate authorization; that is, the required
privilege or authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to restore to an
existing database from a full database backup. To restore to a new database,
you must have SYSADM or SYSCTRL authority.

88 Data Recovery and High Availability Guide and Reference

Using Restore

Prerequisites:

When restoring to an existing database, you should not be connected to the
database that is to be restored: the restore utility automatically establishes a
connection to the specified database, and this connection is terminated at the
completion of the restore operation. When restoring to a new database, an
instance attachment is required to create the database. When restoring to a
new remote database, you must first attach to the instance where the new
database will reside. Then, create the new database, specifying the code page
and the territory of the server.

The database can be local or remote.

Restrictions:

The following restrictions apply to the restore utility:
v You can only use the restore utility if the database has been previously

backed up using the DB2 backup utility.
v A database restore operation cannot be started while the rollforward

process is running.
v You can restore a table space only if the table space currently exists, and if

it is the same table space; “same” means that the table space was not
dropped and then recreated between the backup and the restore operation.)

v You cannot restore a table space-level backup to a new database.
v You cannot perform an online table space-level restore operation involving

the system catalog tables.

Procedure:

The restore utility can be invoked through the command line processor (CLP),
the Restore Database notebook or wizard in the Control Center, or the
db2Restore application programming interface (API).

Following is an example of the RESTORE DATABASE command issued
through the CLP:

db2 restore db sample from D:\DB2Backups taken at 20010320122644

To open the Restore Database notebook or wizard:
1. From the Control Center, expand the object tree until you find the

Databases folder.
2. Click on the Databases folder. Any existing databases are displayed in the

pane on the right side of the window (the contents pane).

Chapter 3. Database Restore 89

3. Click the right mouse button on the database you want in the contents
pane, and select Restore Database or Restore Database Using Wizard from
the pop-up menu. The Restore Database notebook or the Restore Database
wizard opens.

Detailed information is provided through the online help facility within the
Control Center.

Related concepts:

v “Administrative APIs in Embedded SQL or DB2 CLI Programs” in the
Application Development Guide: Programming Client Applications

v “Introducing the plug-in architecture for the Control Center” in the
Administration Guide: Implementation

Related reference:

v “db2Restore - Restore database” on page 104

Using Incremental Restore in a Test and Production Environment

Once a production database is enabled for incremental backup and recovery,
you can use an incremental or delta backup image to create or refresh a test
database. You can do this by using either manual or automatic incremental
restore. To restore the backup image from the production database to the test
database, use the INTO target-database-alias option on the RESTORE
DATABASE command. For example, in a production database with the
following backup images:

backup db prod
Backup successful. The timestamp for this backup image is : <ts1>

backup db prod incremental
Backup successful. The timestamp for this backup image is : <ts2>

an example of a manual incremental restore would be:
restore db prod incremental taken at ts2 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

restore db prod incremental taken at ts1 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

restore db prod incremental taken at ts2 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

90 Data Recovery and High Availability Guide and Reference

If the database TEST already exists, the restore operation will overwrite any
data that is already there. If the database TEST does not exist, the restore
utility will create it and then populate it with the data from the backup
images.

Since automatic incremental restore operations are dependent on the database
history, the restore steps change slightly based on whether or not the test
database exists. To perform an automatic incremental restore to the database
TEST, its history must contain the backup image history for database PROD.
The database history for the backup image will replace any database history
that already exists for database TEST if:
v the database TEST does not exist when the RESTORE DATABASE

command is issued, or
v the database TEST exists when the RESTORE DATABASE command is

issued, and the database TEST history contains no records.

The following example shows an automatic incremental restore to database
TEST which does not exist:

restore db prod incremental automatic taken at ts2 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

The restore utility will create the TEST database and populate it.

If the database TEST does exist and the database history is not empty, you
must drop the database before the automatic incremental restore operation as
follows:

drop db test
DB20000I The DROP DATABASE command completed successfully.

restore db prod incremental automatic taken at ts2 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

If you do not want to drop the database, you can issue the PRUNE HISTORY
command using a timestamp far into the future and the WITH FORCE
OPTION parameter before issuing the RESTORE DATABASE command:

connect to test
Database Connection Information

Database server = <server id>
SQL authorization ID = <id>
Local database alias = TEST

prune history 9999 with force option
DB20000I The PRUNE command completed successfully.

connect reset

Chapter 3. Database Restore 91

DB20000I The SQL command completed successfully.
restore db prod incremental automatic taken at ts2 into test without
prompting
SQL2540W Restore is successful, however a warning "2539" was
encountered during Database Restore while processing in No
Interrupt mode.

In this case, the RESTORE DATABASE COMMAND will act in the same
manner as when the database TEST did not exist.

If the database TEST does exist and the database history is empty, you do not
have to drop the database TEST before the automatic incremental restore
operation:

restore db prod incremental automatic taken at ts2 into test without
prompting
SQL2540W Restore is successful, however a warning "2539" was
encountered during Database Restore while processing in No
Interrupt mode.

You can continue taking incremental or delta backups of the test database
without first taking a full database backup. However, if you ever need to
restore one of the incremental or delta images you will have to perform a
manual incremental restore. This is because automatic incremental restore
operations require that each of the backup images restored during an
automatic incremental restore be created from the same database alias.

If you make a full database backup of the test database after you complete the
restore operation using the production backup image, you can take
incremental or delta backups and can restore them using either manual or
automatic mode.

Related concepts:

v “Incremental Backup and Recovery” on page 28

Related reference:

v “BACKUP DATABASE” on page 72
v “RESTORE DATABASE” on page 95
v “LIST HISTORY” on page 228

92 Data Recovery and High Availability Guide and Reference

Redefining Table Space Containers During a Restore Operation (Redirected
Restore)

During a database backup operation, a record is kept of all the table space
containers associated with the table spaces that are being backed up. During a
restore operation, all containers listed in the backup image are checked to
determine if they exist and if they are accessible. If one or more of these
containers is inaccessible because of media failure (or for any other reason),
the restore operation will fail. A successful restore operation in this case
requires redirection to different containers. DB2® supports adding, changing,
or removing table space containers.

You can redefine table space containers by invoking the RESTORE
DATABASE command and specifying the REDIRECT parameter, or by using
the Containers page of the Restore Database notebook in the Control Center.
The process for invoking a redirected restore of an incremental backup image
is similar to the process for a non-incremental backup image: Call the
RESTORE DATABASE command with the REDIRECT parameter and specify
the backup image from which the database should be incrementally restored.

During a redirected restore operation, directory and file containers are
automatically created if they do not already exist. The database manager does
not automatically create device containers.

Container redirection provides considerable flexibility for managing table
space containers. For example, even though adding containers to SMS table
spaces is not supported, you could accomplish this by specifying an
additional container when invoking a redirected restore operation.

Related reference:

v “RESTORE DATABASE” on page 95
v “Restore Sessions - CLP Examples” on page 115

Related samples:

v “dbrecov.out -- HOW TO RECOVER A DATABASE (C)”
v “dbrecov.sqc -- How to recover a database (C)”
v “dbrecov.out -- HOW TO RECOVER A DATABASE (C++)”
v “dbrecov.sqC -- How to recover a database (C++)”

Chapter 3. Database Restore 93

Restoring to an Existing Database

You can restore a full database backup image to an existing database. The
backup image may differ from the existing database in its alias name, its
database name, or its database seed.

A database seed is a unique identifier for a database that does not change
during the life of the database. The seed is assigned by the database manager
when the database is created. DB2® always uses the seed from the backup
image.

When restoring to an existing database, the restore utility:
v Deletes table, index, and long field data from the existing database, and

replaces it with data from the backup image.
v Replaces table entries for each table space being restored.
v Retains the recovery history file, unless it is damaged or has no entries. If

the recovery history file is damaged, the database manager copies the file
from the backup image.

v Retains the authentication type for the existing database.
v Retains the database directories for the existing database. The directories

define where the database resides, and how it is cataloged.
v Compares the database seeds. If the seeds are different:

– Deletes the logs associated with the existing database.
– Copies the database configuration file from the backup image.
– Sets NEWLOGPATH to the value of the logpath database configuration

parameter if NEWLOGPATH was specified on the RESTORE DATABASE
command.

If the database seeds are the same:
– Deletes the logs if the image is for a non-recoverable database.
– Retains the current database configuration file, unless the file has been

corrupted, in which case the file is copied from the backup image.
– Sets NEWLOGPATH to the value of the logpath database configuration

parameter if NEWLOGPATH was specified on the RESTORE DATABASE
command; otherwise, copies the current log path to the database
configuration file. Validates the log path: If the path cannot be used by
the database, changes the database configuration to use the default log
path.

94 Data Recovery and High Availability Guide and Reference

Restoring to a New Database

You can create a new database and then restore a full database backup image
to it. If you do not create a new database, the restore utility will create one.

When restoring to a new database, the restore utility:
v Creates a new database, using the database alias name that was specified

through the target database alias parameter. (If a target database alias was
not specified, the restore utility creates the database with an alias that is the
same as that specified through the source database alias parameter.)

v Restores the database configuration file from the backup image.
v Sets NEWLOGPATH to the value of the logpath database configuration

parameter if NEWLOGPATH was specified on the RESTORE DATABASE
command. Validates the log path: If the path cannot be used by the
database, changes the database configuration to use the default log path.

v Restores the authentication type from the backup image.
v Restores the comments from the database directories in the backup image.
v Restores the recovery history file for the database.

RESTORE DATABASE

Rebuilds a damaged or corrupted database that has been backed up using the
DB2 backup utility. The restored database is in the same state it was in when
the backup copy was made. This utility can also restore to a database with a
name different from the database name in the backup image (in addition to
being able to restore to a new database).

This utility can also be used to restore backup images that were produced by
the previous two versions of DB2. If a migration is required, it will be
invoked automatically at the end of the restore operation.

If, at the time of the backup operation, the database was enabled for
rollforward recovery, the database can be brought to the state it was in prior
to the occurrence of the damage or corruption by invoking the rollforward
utility after successful completion of a restore operation.

This utility can also restore from a table space level backup.

To restore a database that was backed up on a different workstation platform,
use the db2move utility. You cannot restore a database made on one platform
directly to another platform. Supported versions of Microsoft Windows are
considered equivalent.

Chapter 3. Database Restore 95

Scope:

This command only affects the node on which it is executed.

Authorization:

To restore to an existing database, one of the following:
v sysadm

v sysctrl

v sysmaint

To restore to a new database, one of the following:
v sysadm

v sysctrl

Required connection:

Database, to restore to an existing database. This command automatically
establishes a connection to the specified database.

Instance and database, to restore to a new database. The instance attachment
is required to create the database.

To restore to a new database at an instance different from the current instance
(as defined by the value of the DB2INSTANCE environment variable), it is
necessary to first attach to the instance where the new database will reside.

To restore to a new remote database, it is necessary to attach to the instance
where the new database will reside.

Command syntax:

II RESTORE DATABASE
DB

source-database-alias restore-options
CONTINUE
ABORT

IM

restore-options:

USER username
USING password

I

RESTORE DATABASE

96 Data Recovery and High Availability Guide and Reference

I

K

TABLESPACE
ONLINE

,

TABLESPACE (tablespace-name)
ONLINE

HISTORY FILE
ONLINE

I

I
INCREMENTAL

AUTO
AUTOMATIC
ABORT

I

I

K

USE TSM
XBSA OPEN num-sessions SESSIONS
,

FROM directory
device

LOAD shared-library
OPEN num-sessions SESSIONS

I

I
TAKEN AT date-time TO target-directory

I

I
INTO target-database-alias NEWLOGPATH directory

I

I
WITH num-buffers BUFFERS BUFFER buffer-size DLREPORT filename

I

I
REPLACE EXISTING REDIRECT PARALLELISM n

I

I
WITHOUT ROLLING FORWARD WITHOUT DATALINK WITHOUT PROMPTING

Command parameters:

DATABASE source-database-alias
Alias of the source database from which the backup was taken.

RESTORE DATABASE

Chapter 3. Database Restore 97

CONTINUE
Specifies that the containers have been redefined, and that the final
step in a redirected restore operation should be performed.

ABORT
This parameter:
v Stops a redirected restore operation. This is useful when an error

has occurred that requires one or more steps to be repeated. After
RESTORE DATABASE with the ABORT option has been issued,
each step of a redirected restore operation must be repeated,
including RESTORE DATABASE with the REDIRECT option.

v Terminates an incremental restore operation before completion.

USER username
Identifies the user name under which the database is to be restored.

USING password
The password used to authenticate the user name. If the password is
omitted, the user is prompted to enter it.

TABLESPACE tablespace-name
A list of names used to specify the table spaces that are to be restored.

ONLINE
This keyword, applicable only when performing a table space-level
restore operation, is specified to allow a backup image to be restored
online. This means that other agents can connect to the database while
the backup image is being restored, and that the data in other table
spaces will be available while the specified table spaces are being
restored.

HISTORY FILE
This keyword is specified to restore only the history file from the
backup image.

INCREMENTAL
Without additional parameters, INCREMENTAL specifies a manual
cumulative restore operation. During manual restore the user must
issue each restore command manually for each image involved in the
restore. Do so according to the following order: last, first, second,
third and so on up to and including the last image.

INCREMENTAL AUTOMATIC/AUTO
Specifies an automatic cumulative restore operation.

INCREMENTAL ABORT
Specifies abortion of an in-progress manual cumulative restore
operation.

RESTORE DATABASE

98 Data Recovery and High Availability Guide and Reference

USE TSM
Specifies that the database is to be restored from TSM-managed
output.

OPEN num-sessions SESSIONS
Specifies the number of I/O sessions that are to be used with TSM or
the vendor product.

USE XBSA
Specifies that the XBSA interface is to be used. Backup Services APIs
(XBSA) are an open application programming interface for
applications or facilities needing data storage management for backup
or archiving purposes. Legato NetWorker is a storage manager that
currently supports the XBSA interface.

FROM directory/device
The directory or device on which the backup images reside. If USE
TSM, FROM, and LOAD are omitted, the default value is the current
directory.

On Windows operating systems, the specified directory must not be a
DB2-generated directory. For example, given the following commands:

db2 backup database sample to c:\backup
db2 restore database sample from c:\backup

DB2 generates subdirectories under the c:\backup directory that
should be ignored. To specify precisely which backup image to
restore, use the TAKEN AT parameter. There may be several backup
images stored on the same path.

If several items are specified, and the last item is a tape device, the
user is prompted for another tape. Valid response options are:

c Continue. Continue using the device that generated the
warning message (for example, continue when a new tape has
been mounted).

d Device terminate. Stop using only the device that generated
the warning message (for example, terminate when there are
no more tapes).

t Terminate. Abort the restore operation after the user has failed
to perform some action requested by the utility.

LOAD shared-library
The name of the shared library (DLL on Windows operating systems)
containing the vendor backup and restore I/O functions to be used.
The name can contain a full path. If the full path is not given, the
value defaults to the path on which the user exit program resides.

RESTORE DATABASE

Chapter 3. Database Restore 99

TAKEN AT date-time
The time stamp of the database backup image. The time stamp is
displayed after successful completion of a backup operation, and is
part of the path name for the backup image. It is specified in the form
yyyymmddhhmmss. A partial time stamp can also be specified. For
example, if two different backup images with time stamps
19971001010101 and 19971002010101 exist, specifying 19971002 causes
the image with time stamp 19971002010101 to be used. If a value for
this parameter is not specified, there must be only one backup image
on the source media.

TO target-directory
The target database directory. This parameter is ignored if the utility is
restoring to an existing database. The drive and directory that you
specify must be local.

Note: On Windows operating systems, when using this parameter
specify the drive letter. For example, you might specify
x:\path_name to restore to a specific path, or x: if you do not
need to specify a path. If the path name is too long, an error is
returned.

INTO target-database-alias
The target database alias. If the target database does not exist, it is
created.

When you restore a database backup to an existing database, the
restored database inherits the alias and database name of the existing
database. When you restore a database backup to a nonexistent
database, the new database is created with the alias and database
name that you specify. This new database name must be unique on
the system where you restore it.

NEWLOGPATH directory
The absolute pathname of a directory that will be used for active log
files after the restore operation. This parameter has the same function
as the newlogpath database configuration parameter, except that its
effect is limited to the restore operation in which it is specified. The
parameter can be used when the log path in the backup image is not
suitable for use after the restore operation; for example, when the path
is no longer valid, or is being used by a different database.

WITH num-buffers BUFFERS
The number of buffers to be used. The default value is 2. However, a
larger number of buffers can be used to improve performance when
multiple sources are being read from, or if the value of
PARALLELISM has been increased.

RESTORE DATABASE

100 Data Recovery and High Availability Guide and Reference

BUFFER buffer-size
The size, in pages, of the buffer used for the restore operation. The
minimum value for this parameter is 8 pages; the default value is
1024 pages. If a buffer size of zero is specified, the value of the
database manager configuration parameter restbufsz will be used as
the buffer allocation size.

The restore buffer size must be a positive integer multiple of the
backup buffer size specified during the backup operation. If an
incorrect buffer size is specified, the buffers are allocated to be of the
smallest acceptable size.

When using tape devices on SCO UnixWare 7, specify a buffer size of
16.

DLREPORT filename
The file name, if specified, must be specified as an absolute path.
Reports the files that become unlinked, as a result of a fast reconcile,
during a restore operation. This option is only to be used if the table
being restored has a DATALINK column type and linked files.

REPLACE EXISTING
If a database with the same alias as the target database alias already
exists, this parameter specifies that the restore utility is to replace the
existing database with the restored database. This is useful for scripts
that invoke the restore utility, because the command line processor
will not prompt the user to verify deletion of an existing database. If
the WITHOUT PROMPTING parameter is specified, it is not
necessary to specify REPLACE EXISTING, but in this case, the
operation will fail if events occur that normally require user
intervention.

REDIRECT
Specifies a redirected restore operation. To complete a redirected
restore operation, this command should be followed by one or more
SET TABLESPACE CONTAINERS commands, and then by a
RESTORE DATABASE command with the CONTINUE option.

Note: All commands associated with a single redirected restore
operation must be invoked from the same window or CLP
session.

WITHOUT ROLLING FORWARD
Specifies that the database is not to be put in rollforward pending
state after it has been successfully restored.

If, following a successful restore operation, the database is in
rollforward pending state, the ROLLFORWARD command must be
invoked before the database can be used again.

RESTORE DATABASE

Chapter 3. Database Restore 101

WITHOUT DATALINK
Specifies that any tables with DATALINK columns are to be put in
DataLink_Reconcile_Pending (DRP) state, and that no reconciliation of
linked files is to be performed.

PARALLELISM n
Specifies the number of buffer manipulators that are to be spawned
during the restore operation. The default value is 1.

WITHOUT PROMPTING
Specifies that the restore operation is to run unattended. Actions that
normally require user intervention will return an error message. When
using a removable media device, such as tape or diskette, the user is
prompted when the device ends, even if this option is specified.

Examples:

In the following example, the database WSDB is defined on all 4 partitions,
numbered 0 through 3. The path /dev3/backup is accessible from all
partitions. The following offline backup images are available from
/dev3/backup:

wsdb.0.db2inst1.NODE0000.CATN0000.20020331234149.001
wsdb.0.db2inst1.NODE0001.CATN0000.20020331234427.001
wsdb.0.db2inst1.NODE0002.CATN0000.20020331234828.001
wsdb.0.db2inst1.NODE0003.CATN0000.20020331235235.001

To restore the catalog partition first, then all other database partitions of the
WSDB database from the /dev3/backup directory, issue the following
commands from one of the database partitions:

db2_all ’<<+0< db2 RESTORE DATABASE wsdb FROM /dev3/backup
TAKEN AT 20020331234149

INTO wsdb REPLACE EXISTING’
db2_all ’<<+1< db2 RESTORE DATABASE wsdb FROM /dev3/backup
TAKEN AT 20020331234427

INTO wsdb REPLACE EXISTING’
db2_all ’<<+2< db2 RESTORE DATABASE wsdb FROM /dev3/backup
TAKEN AT 20020331234828

INTO wsdb REPLACE EXISTING’
db2_all ’<<+3< db2 RESTORE DATABASE wsdb FROM /dev3/backup
TAKEN AT 20020331235235

INTO wsdb REPLACE EXISTING’

The db2_all utility issues the restore command to each specified database
partition.

Following is a typical redirected restore scenario for a database whose alias is
MYDB:
1. Issue a RESTORE DATABASE command with the REDIRECT option.

db2 restore db mydb replace existing redirect

RESTORE DATABASE

102 Data Recovery and High Availability Guide and Reference

After successful completion of step 1, and before completing step 3, the
restore operation can be aborted by issuing:

db2 restore db mydb abort

2. Issue a SET TABLESPACE CONTAINERS command for each table space
whose containers must be redefined. For example:

db2 set tablespace containers for 5 using
(file ’f:\ts3con1’ 20000, file ’f:\ts3con2’ 20000)

To verify that the containers of the restored database are the ones specified
in this step, issue the LIST TABLESPACE CONTAINERS command.

3. After successful completion of steps 1 and 2, issue:
db2 restore db mydb continue

This is the final step of the redirected restore operation.
4. If step 3 fails, or if the restore operation has been aborted, the redirected

restore can be restarted, beginning at step 1.

Following is a sample weekly incremental backup strategy for a recoverable
database. It includes a weekly full database backup operation, a daily
non-cumulative (delta) backup operation, and a mid-week cumulative
(incremental) backup operation:

(Sun) backup db mydb use tsm
(Mon) backup db mydb online incremental delta use tsm
(Tue) backup db mydb online incremental delta use tsm
(Wed) backup db mydb online incremental use tsm
(Thu) backup db mydb online incremental delta use tsm
(Fri) backup db mydb online incremental delta use tsm
(Sat) backup db mydb online incremental use tsm

For an automatic database restore of the images created on Friday morning,
issue:

restore db mydb incremental automatic taken at (Fri)

For a manual database restore of the images created on Friday morning, issue:
restore db mydb incremental taken at (Fri)
restore db mydb incremental taken at (Sun)
restore db mydb incremental taken at (Wed)
restore db mydb incremental taken at (Thu)
restore db mydb incremental taken at (Fri)

Usage notes:

Any RESTORE DATABASE command of the form db2 restore db <name> will
perform a full database restore, regardless of whether the image being
restored is a database image or a table space image. Any RESTORE
DATABASE command of the form db2 restore db <name> tablespace will

RESTORE DATABASE

Chapter 3. Database Restore 103

perform a table space restore of the table spaces found in the image. Any
RESTORE DATABASE command in which a list of table spaces is provided
will perform a restore of whatever table spaces are explicitly listed.

Related reference:

v “BACKUP DATABASE” on page 72
v “ROLLFORWARD DATABASE” on page 134
v “db2move - Database Movement Tool” in the Command Reference

db2Restore - Restore database

Rebuilds a damaged or corrupted database that has been backed up using
db2Backup - Backup Database. The restored database is in the same state it
was in when the backup copy was made. This utility can also restore to a
database with a name different from the database name in the backup image
(in addition to being able to restore to a new database).

This utility can also be used to restore DB2 databases created in the two
previous releases.

This utility can also restore from a table space level backup.

Scope:

This API only affects the database partition from which it is called.

Authorization:

To restore to an existing database, one of the following:
v sysadm

v sysctrl

v sysmaint

To restore to a new database, one of the following:
v sysadm

v sysctrl

Required connection:

Database, to restore to an existing database. This API automatically establishes
a connection to the specified database and will release the connection when
the restore operation finishes.

RESTORE DATABASE

104 Data Recovery and High Availability Guide and Reference

Instance and database, to restore to a new database. The instance attachment
is required to create the database.

To restore to a new database at an instance different from the current instance
(as defined by the value of the DB2INSTANCE environment variable), it is
necessary to first attach to the instance where the new database will reside.

API include file:

db2ApiDf.h

C API syntax:

db2Restore - Restore database

Chapter 3. Database Restore 105

Generic API syntax:
/* File: db2ApiDf.h */
/* API: db2gRestore */
/* ... */
SQL_API_RC SQL_API_FN
db2gRestore (

db2Uint32 versionNumber,
void *pDB2gRestoreStruct,

/* File: db2ApiDf.h */
/* API: db2Restore */
/* ... */
SQL_API_RC SQL_API_FN
db2Restore (

db2Uint32 versionNumber,
void *pDB2RestoreStruct,
struct sqlca *pSqlca);

/* ... */

typedef SQL_STRUCTURE db2RestoreStruct
{

char *piSourceDBAlias;
char *piTargetDBAlias;
char oApplicationId[SQLU_APPLID_LEN+1];
char *piTimestamp;
char *piTargetDBPath;
char *piReportFile;
struct db2TablespaceStruct *piTablespaceList;
struct db2MediaListStruct *piMediaList;
char *piUsername;
char *piPassword;
char *piNewLogPath;
void *piVendorOptions;
db2Uint32 iVendorOptionsSize;
db2Uint32 iParallelism;
db2Uint32 iBufferSize;
db2Uint32 iNumBuffers;
db2Uint32 iCallerAction;
db2Uint32 iOptions;

} db2BackupStruct;

typedef SQL_STRUCTURE db2TablespaceStruct
{

char **tablespaces;
db2Uint32 numTablespaces;

} db2TablespaceStruct;

typedef SQL_STRUCTURE db2MediaListStruct
{

char **locations;
db2Uint32 numLocations;
char locationType;

} db2MediaListStruct;
/* ... */

db2Restore - Restore database

106 Data Recovery and High Availability Guide and Reference

struct sqlca *pSqlca);

typedef SQL_STRUCTURE db2gRestoreStruct
{

char *piSourceDBAlias;
db2Uint32 iSourceDBAliasLen;
char *piTargetDBAlias;
db2Uint32 iTargetDBAliasLen;
char *poApplicationId;
db2Uint32 iApplicationIdLen;
char *piTimestamp;
db2Uint32 iTimestampLen;
char *piTargetDBPath;
db2Uint32 iTargetDBPathLen;
char *piReportFile;
db2Uint32 iReportFileLen;
struct db2gTablespaceStruct *piTablespaceList;
struct db2gMediaListStruct *piMediaList;
char *piUsername;
db2Uint32 iUsernameLen;
char *piPassword;
db2Uint32 iPasswordLen;
char *piNewLogPath;
db2Uint32 iNewLogPathLen;
void *piVendorOptions;
db2Uint32 iVendorOptionsSize;
db2Uint32 iParallelism;
db2Uint32 iBufferSize;
db2Uint32 iNumBuffers;
db2Uint32 iCallerAction;
db2Uint32 iOptions;

} db2gBackupStruct;

typedef SQL_STRUCTURE db2gTablespaceStruct
{

struct db2Char *tablespaces;
db2Uint32 numTablespaces;

} db2gTablespaceStruct;

typedef SQL_STRUCTURE db2gMediaListStruct
{

struct db2Char *locations;
db2Uint32 numLocations;
char locationType;

} db2gMediaListStruct;

typedef SQL_STRUCTURE db2Char
{

char *pioData;
db2Uint32 iLength;
db2Uint32 oLength;

} db2Char;
/* ... */

API parameters:

db2Restore - Restore database

Chapter 3. Database Restore 107

versionNumber
Input. Specifies the version and release level of the structure passed as
the second parameter pParamStruct.

pDB2RestoreStruct
Input. A pointer to the db2RestoreStruct structure

pSqlca
Output. A pointer to the sqlca structure.

piSourceDBAlias
Input. A string containing the database alias of the source database
backup image.

iSourceDBAliasLen
Input. A 4-byte unsigned integer representing the length in bytes of
the source database alias.

piTargetDBAlias
Input. A string containing the target database alias. If this parameter is
null, the piSourceDBAlias will be used.

iTargetDBAliasLen
Input. A 4-byte unsigned integer representing the length in bytes of
the target database alias.

oApplicationId
Output. The API will return a string identifying the agent servicing
the application. Can be used to obtain information about the progress
of the backup operation using the database monitor.

poApplicationId
Output. Supply a buffer of length SQLU_APPLID_LEN+1 (defined in
sqlutil). The API will return a string identifying the agent servicing
the application. Can be used to obtain information about the progress
of the backup operation using the database monitor.

iApplicationIdLen
Input. A 4-byte unsigned integer representing the length in bytes of
the poApplicationId buffer. Should be equal to SQLU_APPLID_LEN+1
(defined in sqlutil).

piTimestamp
Input. A string representing the timestamp of the backup image. This
field is optional if there is only one backup image in the source
specified.

iTimestampLen
Input. A 4-byte unsigned integer representing the length in bytes of
the piTimestamp buffer.

db2Restore - Restore database

108 Data Recovery and High Availability Guide and Reference

piTargetDBPath
Input. A string containing the relative or fully qualified name of the
target database directory on the server. Used if a new database is to
be created for the restored backup; otherwise not used.

piReportFile
Input. The file name, if specified, must be fully qualified. The
datalinks files that become unlinked during restore (as a result of a
fast reconcile) will be reported.

iReportFileLen
Input. A 4-byte unsigned integer representing the length in bytes of
the piReportFile buffer.

piTablespaceList
Input. List of table spaces to be restored. Used when restoring a
subset of table spaces from a database or table space backup image.
See the DB2TablespaceStruct structure . The following restrictions
apply:
v The database must be recoverable; that is, log retain or user exits

must be enabled.
v The database being restored to must be the same database that was

used to create the backup image. That is, table spaces can not be
added to a database through the table space restore function.

v The rollforward utility will ensure that table spaces restored in a
partitioned database environment are synchronized with any other
database partition containing the same table spaces. If a table space
restore operation is requested and the piTablespaceList is NULL, the
restore utility will attempt to restore all of the table spaces in the
backup image.

When restoring a table space that has been renamed since it was
backed up, the new table space name must be used in the restore
command. If the old table space name is used, it will not be found.

piMediaList
Input. Source media for the backup image. The information provided
depends on the value of the locationType field. The valid values for
locationType (defined in sqlutil) are:

SQLU_LOCAL_MEDIA
Local devices (a combination of tapes, disks, or diskettes).

SQLU_TSM_MEDIA
TSM. If the locations pointer is set to NULL, the TSM shared
library provided with DB2 is used. If a different version of the
TSM shared library is desired, use SQLU_OTHER_MEDIA
and provide the shared library name.

db2Restore - Restore database

Chapter 3. Database Restore 109

SQLU_OTHER_MEDIA
Vendor product. Provide the shared library name in the
locations field.

SQLU_USER_EXIT
User exit. No additional input is required (only available
when server is on OS/2).

piUsername
Input. A string containing the user name to be used when attempting
a connection. Can be NULL.

iUsernameLen
Input. A 4-byte unsigned integer representing the length in bytes of
piUsername. Set to zero if no user name is provided.

piPassword
Input. A string containing the password to be used with the user
name. Can be NULL.

iPasswordLen
Input. A 4-byte unsigned integer representing the length in bytes of
piPassword. Set to zero if no password is provided.

piNewLogPath
Input. A string representing the path to be used for logging after the
restore has completed. If this field is null the default log path will be
used.

iNewLogPathLen
Input. A 4-byte unsigned integer representing the length in bytes of
piNewLogPath.

piVendorOptions
Input. Used to pass information from the application to the vendor
functions. This data structure must be flat; that is, no level of
indirection is supported. Note that byte-reversal is not done, and the
code page is not checked for this data.

iVendorOptionsSize
Input. The length of the piVendorOptions, which cannot exceed 65535
bytes.

iParallelism
Input. Degree of parallelism (number of buffer manipulators).
Minimum is 1. Maximum is 1024. The default is 1.

iBufferSize
Input. Backup buffer size in 4KB allocation units (pages). Minimum is

db2Restore - Restore database

110 Data Recovery and High Availability Guide and Reference

8 units. The default is 1024 units. The size entered for a restore must
be equal to or an integer multiple of the buffer size used to produce
the backup image.

iNumBuffers
Input. Specifies number of restore buffers to be used.

iCallerAction
Input. Specifies action to be taken. Valid values (defined in db2ApiDf)
are:

DB2RESTORE_RESTORE
Start the restore operation.

DB2RESTORE_NOINTERRUPT
Start the restore. Specifies that the restore will run unattended,
and that scenarios which normally require user intervention
will either be attempted without first returning to the caller, or
will generate an error. Use this caller action, for example, if it
is known that all of the media required for the restore have
been mounted, and utility prompts are not desired.

DB2RESTORE_CONTINUE
Continue the restore after the user has performed some action
requested by the utility (mount a new tape, for example).

DB2RESTORE_TERMINATE
Terminate the restore after the user has failed to perform some
action requested by the utility.

DB2RESTORE_DEVICE_TERMINATE
Remove a particular device from the list of devices used by
restore. When a particular device has exhausted its input,
restore will return a warning to the caller. Call restore again
with this caller action to remove the device which generated
the warning from the list of devices being used.

DB2RESTORE_PARM_CHK
Used to validate parameters without performing a restore.
This option does not terminate the database connection after
the call returns. After successful return of this call, it is
expected that the user will issue a call with
DB2RESTORE_CONTINUE to proceed with the action.

DB2RESTORE_PARM_CHK_ONLY
Used to validate parameters without performing a restore.
Before this call returns, the database connection established by
this call is terminated, and no subsequent call is required.

DB2RESTORE_TERMINATE_INCRE
Terminate an incremental restore operation before completion.

db2Restore - Restore database

Chapter 3. Database Restore 111

DB2RESTORE_RESTORE_STORDEF
Initial call. Table space container redefinition requested.

DB2RESTORE_STORDEF_NOINTERRUPT
Initial call. The restore will run uninterrupted. Table space
container redefinition requested.

iOptions
Input. A bitmap of restore properties. The options are to be combined
using the bitwise OR operator to produce a value for iOptions. Valid
values (defined in db2ApiDf) are:

DB2RESTORE_OFFLINE
Perform an offline restore operation.

DB2RESTORE_ONLINE
Perform an online restore operation.

DB2RESTORE_DB
Restore all table spaces in the database. This must be run
offline

DB2RESTORE_TABLESPACE
Restore only the table spaces listed in the piTablespaceList
parameter from the backup image. This can be online or
offline.

DB2RESTORE_HISTORY
Restore only the history file.

DB2RESTORE_INCREMENTAL
Perform a manual cumulative restore operation.

DB2RESTORE_AUTOMATIC
Perform an automatic cumulative (incremental) restore
operation. Must be specified with
DB2RESTORE_INCREMENTAL.

DB2RESTORE_DATALINK
Perform reconciliation operations. Tables with a defined
DATALINK column must have RECOVERY YES option
specified.

DB2RESTORE_NODATALINK
Do not perform reconciliation operations. Tables with
DATALINK columns are placed into
DataLink_Roconcile_pending (DRP) state. Tables with a
defined DATALINK column must have the RECOVERY YES
option specified.

db2Restore - Restore database

112 Data Recovery and High Availability Guide and Reference

DB2RESTORE_ROLLFWD
Place the database in rollforward pending state after it has
been successfully restored.

DB2RESTORE_NOROLLFWD
Do not place the database in rollforward pending state after it
has been successfully restored. This cannot be specified for
backups taken online or for table space level restores. If,
following a successful restore, the database is in roll-forward
pending state, db2Rollforward - Rollforward Database must
be executed before the database can be used.

tablespaces
A pointer to the list of table spaces to be backed up. For C, the list is
null-terminated strings. In the generic case, it is a list of db2Char
structures.

numTablespaces
Number of entries in the tablespaces parameter.

locations
A pointer to the list of media locations. For C, the list is
null-terminated strings. In the generic case, it is a list of db2Char
structures.

numLocations
The number of entries in the locations parameter.

locationType
A character indicated the media type. Valid values (defined in
sqlutil) are:

SQLU_LOCAL_MEDIA
Local devices(tapes, disks, diskettes, or named pipes).

SQLU_TSM_MEDIA
Tivoli Storage Manager.

SQLU_OTHER_MEDIA
Vendor library.

SQLU_USER_EXIT
User exit (only available when the server is on OS/2).

pioData
A pointer to the character data buffer.

iLength
Input. The size of the pioData buffer

oLength
Output. Reserverd for future use.

db2Restore - Restore database

Chapter 3. Database Restore 113

Usage notes:

For offline restore, this utility connects to the database in exclusive mode. The
utility fails if any application, including the calling application, is already
connected to the database that is being restored. In addition, the request will
fail if the restore utility is being used to perform the restore, and any
application, including the calling application, is already connected to any
database on the same workstation. If the connect is successful, the API locks
out other applications until the restore is completed.

The current database configuration file will not be replaced by the backup
copy unless it is unusable. If the file is replaced, a warning message is
returned.

The database or table space must have been backed up using db2Backup -
Backup Database.

If the caller action is DB2RESTORE_NOINTERRUPT, the restore continues
without prompting the application. If the caller action is
DB2RESTORE_RESTORE, and the utility is restoring to an existing database,
the utility returns control to the application with a message requesting some
user interaction. After handling the user interaction, the application calls
RESTORE DATABASE again, with the caller action set to indicate whether
processing is to continue (DB2RESTORE_CONTINUE) or terminate
(DB2RESTORE_TERMINATE) on the subsequent call. The utility finishes
processing, and returns an SQLCODE in the sqlca.

To close a device when finished, set the caller action to
DB2RESTORE_DEVICE_TERMINATE. If, for example, a user is restoring from
3 tape volumes using 2 tape devices, and one of the tapes has been restored,
the application obtains control from the API with an SQLCODE indicating
end of tape. The application can prompt the user to mount another tape, and
if the user indicates ″no more″, return to the API with caller action
SQLUD_DEVICE_TERMINATE to signal end of the media device. The device
driver will be terminated, but the rest of the devices involved in the restore
will continue to have their input processed until all segments of the restore set
have been restored (the number of segments in the restore set is placed on the
last media device during the backup process). This caller action can be used
with devices other than tape (vendor supported devices).

To perform a parameter check before returning to the application, set caller
action to DB2RESTORE_PARM_CHK.

Set caller action to DB2RESTORE_RESTORE_STORDEF when performing a
redirected restore; used in conjunction with sqlbstsc - Set Tablespace
Containers.

db2Restore - Restore database

114 Data Recovery and High Availability Guide and Reference

If a system failure occurs during a critical stage of restoring a database, the
user will not be able to successfully connect to the database until a successful
restore is performed. This condition will be detected when the connection is
attempted, and an error message is returned. If the backed-up database is not
configured for roll-forward recovery, and there is a usable current
configuration file with either of these parameters enabled, following the
restore, the user will be required to either take a new backup of the database,
or disable the log retain and user exit parameters before connecting to the
database.

Although the restored database will not be dropped (unless restoring to a
nonexistent database), if the restore fails, it will not be usable.

If the restore type specifies that the history file on the backup is to be
restored, it will be restored over the existing history file for the database,
effectively erasing any changes made to the history file after the backup that
is being restored. If this is undesirable, restore the history file to a new or test
database so that its contents can be viewed without destroying any updates
that have taken place.

If, at the time of the backup operation, the database was enabled for roll
forward recovery, the database can be brought to the state it was in prior to
the occurrence of the damage or corruption by issuing db2Rollforward after
successful execution of db2Restore. If the database is recoverable, it will
default to roll forward pending state after the completion of the restore.

If the database backup image is taken offline, and the caller does not want to
roll forward the database after the restore, the DB2RESTORE_NOROLLFWD
option can be used for the restore. This results in the database being useable
immediately after the restore. If the backup image is taken online, the caller
must roll forward through the corresponding log records at the completion of
the restore.

Related samples:

v “dbrecov.sqc -- How to recover a database (C)”
v “dbrecov.sqC -- How to recover a database (C++)”

Restore Sessions - CLP Examples

Example 1

Following is a typical non-incremental redirected restore scenario for a
database whose alias is MYDB:
1. Issue a RESTORE DATABASE command with the REDIRECT option.

db2 restore db mydb replace existing redirect

db2Restore - Restore database

Chapter 3. Database Restore 115

2. Issue a SET TABLESPACE CONTAINERS command for each table space
whose containers you want to redefine. For example, in a Windows
environment:

db2 set tablespace containers for 5 using
(file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

To verify that the containers of the restored database are the ones specified
in this step, issue the LIST TABLESPACE CONTAINERS command for
every table space whose container locations are being redefined.

3. After successful completion of steps 1 and 2, issue:
db2 restore db mydb continue

This is the final step of the redirected restore operation.
4. If step 3 fails, or if the restore operation has been aborted, the redirected

restore can be restarted, beginning at step 1.

Notes:

1. After successful completion of step 1, and before completing step 3, the
restore operation can be aborted by issuing:

db2 restore db mydb abort

2. If step 3 fails, or if the restore operation has been aborted, the redirected
restore can be restarted, beginning at step 1.

Example 2

Following is a typical manual incremental redirected restore scenario for a
database whose alias is MYDB and has the following backup images:

backup db mydb
Backup successful. The timestamp for this backup image is : <ts1>

backup db mydb incremental
Backup successful. The timestamp for this backup image is : <ts2>

1. Issue a RESTORE DATABASE command with the INCREMENTAL and
REDIRECT options.

db2 restore db mydb incremental taken at <ts2> replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table space
whose containers must be redefined. For example, in a Windows
environment:

db2 set tablespace containers for 5 using
(file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

To verify that the containers of the restored database are the ones specified
in this step, issue the LIST TABLESPACE CONTAINERS command.

3. After successful completion of steps 1 and 2, issue:
db2 restore db mydb continue

116 Data Recovery and High Availability Guide and Reference

4. The remaining incremental restore commands can now be issued as
follows:

db2 restore db mydb incremental taken at <ts1>
db2 restore db mydb incremental taken at <ts2>

This is the final step of the redirected restore operation.

Notes:

1. After successful completion of step 1, and before completing step 3, the
restore operation can be aborted by issuing:

db2 restore db mydb abort

2. After successful completion of step 3, and before issuing all the required
commands in step 4, the restore operation can be aborted by issuing:

db2 restore db mydb incremental abort

3. If step 3 fails, or if the restore operation has been aborted, the redirected
restore can be restarted, beginning at step 1.

4. If either restore command fails in step 4, the failing command can be
reissued to continue the restore process.

Example 3

Following is a typical automatic incremental redirected restore scenario for the
same database:
1. Issue a RESTORE DATABASE command with the INCREMENTAL

AUTOMATIC and REDIRECT options.
db2 restore db mydb incremental automatic taken at <ts2>

replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table space
whose containers must be redefined. For example, in a Windows
environment:

db2 set tablespace containers for 5 using
(file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

To verify that the containers of the restored database are the ones specified
in this step, issue the LIST TABLESPACE CONTAINERS command.

3. After successful completion of steps 1 and 2, issue:
db2 restore db mydb continue

This is the final step of the redirected restore operation.

Notes:

1. After successful completion of step 1, and before completing step 3, the
restore operation can be aborted by issuing:

db2 restore db mydb abort

Chapter 3. Database Restore 117

2. If step 3 fails, or if the restore operation has been aborted, the redirected
restore can be restarted, beginning at step 1 after issuing:

db2 restore db mydb incremental abort

Related reference:

v “RESTORE DATABASE” on page 95
v “LIST TABLESPACE CONTAINERS” in the Command Reference

v “SET TABLESPACE CONTAINERS” in the Command Reference

118 Data Recovery and High Availability Guide and Reference

Chapter 4. Rollforward Recovery

This section describes the DB2 UDB rollforward utility, which is used to
recover a database by applying transactions that were recorded in the
database recovery log files.

The following topics are covered:
v “Rollforward Overview”
v “Privileges, Authorities, and Authorization Required to Use Rollforward” on

page 121
v “Using Rollforward” on page 121
v “Rolling Forward Changes in a Table Space” on page 123
v “Recovering a Dropped Table” on page 128
v “Using the Load Copy Location File” on page 130
v “Synchronizing Clocks in a Partitioned Database System” on page 132
v “Client/Server Timestamp Conversion” on page 134
v “ROLLFORWARD DATABASE” on page 134
v “db2Rollforward - Rollforward Database” on page 145
v “Rollforward Sessions - CLP Examples” on page 157

Rollforward Overview

The simplest form of the DB2® ROLLFORWARD DATABASE command
requires only that you specify the alias name of the database that you want to
rollforward recover. For example:

db2 rollforward db sample to end of logs and stop

In this example, the command returns:
Rollforward Status

Input database alias = sample
Number of nodes have returned status = 1

Node number = 0
Rollforward status = not pending
Next log file to be read =
Log files processed = -
Last committed transaction = 2001-03-11-02.39.48.000000

DB20000I The ROLLFORWARD command completed successfully.

© Copyright IBM Corp. 2001, 2002 119

The general approach to rollforward recovery involves:
1. Invoking the rollforward utility without the STOP option.
2. Invoking the rollforward utility with the QUERY STATUS option

If you specify recovery to the end of the logs, the QUERY STATUS option
can indicate that one or more log files is missing, if the returned point in
time is earlier than you expect.
If you specify point-in-time recovery, the QUERY STATUS option will help
you to ensure that the rollforward operation has completed at the correct
point.

3. Invoking the rollforward utility with the STOP option. After the operation
stops, it is not possible to roll additional changes forward.

A database must be restored successfully (using the restore utility) before it
can be rolled forward, but a table space does not. A table space may be
temporarily put in rollforward pending state, but not require a restore
operation to undo it (following a power interruption, for example).

When the rollforward utility is invoked:
v If the database is in rollforward pending state, the database is rolled

forward. If table spaces are also in rollforward pending state, you must
invoke the rollforward utility again after the database rollforward operation
completes to roll the table spaces forward.

v If the database is not in rollforward pending state, but table spaces in the
database are in rollforward pending state:
– If you specify a list of table spaces, only those table spaces are rolled

forward.
– If you do not specify a list of table spaces, all table spaces that are in

rollforward pending state are rolled forward.

A database rollforward operation runs offline. The database is not available
for use until the rollforward operation completes successfully, and the
operation cannot complete unless the STOP option was specified when the
utility was invoked.

A table space rollforward operation can run offline. The database is not
available for use until the rollforward operation completes successfully. This
occurs if the end of the logs is reached, or if the STOP option was specified
when the utility was invoked.

You can perform an online rollforward operation on table spaces, as long as
SYSCATSPACE is not included. When you perform an online rollforward
operation on a table space, the table space is not available for use, but the
other table spaces in the database are available.

120 Data Recovery and High Availability Guide and Reference

When you first create a database, it is enabled for circular logging only. This
means that logs are reused, rather than being saved or archived. With circular
logging, rollforward recovery is not possible: only crash recovery or version
recovery can be done. Archived logs document changes to a database that
occur after a backup was taken. You enable log archiving (and rollforward
recovery) by setting the logretain database configuration parameter to
RECOVERY, or setting the userexit database configuration parameter to YES, or
both. The default value for both of these parameters is NO, because initially,
there is no backup image that you can use to recover the database. When you
change the value of one or both of these parameters, the database is put into
backup pending state, and you must take an offline backup of the database
before it can be used again.

Related concepts:

v “Using the Load Copy Location File” on page 130
v “Understanding Recovery Logs” on page 34

Related reference:

v “ROLLFORWARD DATABASE” on page 134
v “Configuration Parameters for Database Logging” on page 39

Privileges, Authorities, and Authorization Required to Use Rollforward

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects
for which they have the appropriate authorization; that is, the required
privilege or authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the
rollforward utility.

Using Rollforward

Prerequisites:

You should not be connected to the database that is to be rollforward
recovered: the rollforward utility automatically establishes a connection to the
specified database, and this connection is terminated at the completion of the
rollforward operation.

Chapter 4. Rollforward Recovery 121

Do not restore table spaces without cancelling a rollforward operation that is
in progress; otherwise, you may have a table space set in which some table
spaces are in rollforward in progress state, and some table spaces are in
rollforward pending state. A rollforward operation that is in progress will
only operate on the tables spaces that are in rollforward in progress state.

The database can be local or remote.

Restrictions:

The following restrictions apply to the rollforward utility:
v You can only invoke one rollforward operation at a time. If there are many

table spaces to recover, you can specify all of them in the same operation.
v If you have renamed a table space following the most recent backup

operation, ensure that you use the new name when rolling the table space
forward. The previous table space name will not be recognized.

v You cannot cancel a rollforward operation that is running. You can only
cancel a rollforward operation that has completed, but for which the STOP
option has not been specified, or a rollforward operation that has failed
before completing.

v You cannot continue a table space rollforward operation to a point in time,
specifying a time stamp that is less than the previous one. If a point in time
is not specified, the previous one is used. You can initiate a rollforward
operation to a point in time by just specifying STOP, but this is only
allowed if the table spaces involved were all restored from the same offline
backup image. In this case, no log processing is required. If you start
another rollforward operation with a different table space list before the
in-progress rollforward operation is either completed or cancelled, an error
message (SQL4908) is returned. Invoke the LIST TABLESPACES command
on all nodes to determine which table spaces are currently being rolled
forward (rollforward in progress state), and which table spaces are ready to
be rolled forward (rollforward pending state). You have three options:
– Finish the in-progress rollforward operation on all table spaces.
– Finish the in-progress rollforward operation on a subset of table spaces.

(This may not be possible if the rollforward operation is to continue to a
specific point in time, which requires the participation of all nodes.)

– Cancel the in-progress rollforward operation.
v In a partitioned database environment, the rollforward utility must be

invoked from the catalog node of the database.

Procedure:

122 Data Recovery and High Availability Guide and Reference

The rollforward utility can be invoked through the command line processor
(CLP), the Rollforward Database notebook in the Control Center, or the
db2Rollforward application programming interface (API).

Following is an example of the ROLLFORWARD DATABASE command
issued through the CLP:

db2 rollforward db sample to end of logs and stop

To open the Rollforward Database notebook:
1. From the Control Center, expand the object tree until you find the

Databases folder.
2. Click on the Databases folder. Any existing databases are displayed in the

pane on the right side of the window (the contents pane).
3. Click the right mouse button on the database you want in the contents

pane, and select Rollforward from the pop-up menu. The Rollforward
Database notebook opens.

Detailed information is provided through the online help facility within the
Control Center.

Related concepts:

v “Administrative APIs in Embedded SQL or DB2 CLI Programs” in the
Application Development Guide: Programming Client Applications

v “Introducing the plug-in architecture for the Control Center” in the
Administration Guide: Implementation

Related reference:

v “db2Rollforward - Rollforward Database” on page 145

Rolling Forward Changes in a Table Space

If the database is enabled for forward recovery, you have the option of
backing up, restoring, and rolling forward table spaces instead of the entire
database. You may want to implement a recovery strategy for individual table
spaces because this can save time: it takes less time to recover a portion of the
database than it does to recover the entire database. For example, if a disk is
bad, and it contains only one table space, that table space can be restored and
rolled forward without having to recover the entire database, and without
impacting user access to the rest of the database, unless the damaged table
space contains the system catalog tables; in this situation, you cannot connect
to the database. (The system catalog table space can be restored independently
if a table space-level backup image containing the system catalog table space

Chapter 4. Rollforward Recovery 123

is available.) Table space-level backups also allow you to back up critical parts
of the database more frequently than other parts, and requires less time than
backing up the entire database.

After a table space is restored, it is always in rollforward pending state. To
make the table space usable, you must perform rollforward recovery on it. In
most cases, you have the option of rolling forward to the end of the logs, or
rolling forward to a point in time. You cannot, however, roll table spaces
containing system catalog tables forward to a point in time. These table spaces
must be rolled forward to the end of the logs to ensure that all table spaces in
the database remain consistent.

When a table space is rolled forward, DB2® will skip files which are known
not to contain any log records affecting that table space. If you want all of the
log files to be processed, set the DB2_COLLECT_TS_REC_INFO registry
variable to false.

The table space change history file (DB2TSCHG.HIS), located in the database
directory, keeps track of which logs should be processed for each table space.
You can view the contents of this file using the db2logsForRfwd utility, and
delete entries from it using the PRUNE HISTORY command. During a
database restore operation, DB2TSCHG.HIS is restored from the backup image
and then brought up to date during the database rollforward operation. If no
information is available for a log file, it is treated as though it is required for
the recovery of every table space.

Since information for each log file is flushed to disk after the log becomes
inactive, this information can be lost as a result of a crash. To compensate for
this, if a recovery operation begins in the middle of a log file, the entire log is
treated as though it contains modifications to every table space in the system.
After this, the active logs will be processed and the information for them will
be rebuilt. If information for older or archived log files is lost in a crash
situation and no information for them exists in the data file, they will be
treated as though they contain modifications for every table space during the
table space recovery operation.

Before rolling a table space forward, invoke the LIST TABLESPACES SHOW
DETAIL command. This command returns the minimum recovery time, which is
the earliest point in time to which the table space can be rolled forward. The
minimum recovery time is updated when data definition language (DDL)
statements are run against the table space, or against tables in the table space.
The table space must be rolled forward to at least the minimum recovery
time, so that it becomes synchronized with the information in the system
catalog tables. If recovering more than one table space, the table spaces must
be rolled forward to at least the highest minimum recovery time of all the
table spaces being recovered. In a partitioned database environment, issue the

124 Data Recovery and High Availability Guide and Reference

LIST TABLESPACES SHOW DETAIL command on all partitions. The table
spaces must be rolled forward to at least the highest minimum recovery time
of all the table spaces on all partitions.

If you are rolling table spaces forward to a point in time, and a table is
contained in multiple table spaces, all of these table spaces must be rolled
forward simultaneously. If, for example, the table data is contained in one
table space, and the index for the table is contained in another table space,
you must roll both table spaces forward simultaneously to the same point in
time.

If the data and the long objects in a table are in separate table spaces, and the
long object data has been reorganized, the table spaces for both the data and
the long objects must be restored and rolled forward together. You should
take a backup of the affected table spaces after the table is reorganized.

If you want to roll a table space forward to a point in time, and a table in the
table space is either:
v An underlying table for a materialized query or staging table that is in

another table space
v A materialized query or staging table for a table in another table space

You should roll both table spaces forward to the same point in time. If you do
not, the materialized query or staging table is placed in check pending state at
the end of the rollforward operation. The materialized query table will need
to be fully refreshed, and the staging table will be marked as incomplete.

If you want to roll a table space forward to a point in time, and a table in the
table space participates in a referential integrity relationship with another
table that is contained in another table space, you should roll both table
spaces forward simultaneously to the same point in time. If you do not, the
child table in the referential integrity relationship will be placed in check
pending state at the end of the rollforward operation. When the child table is
later checked for constraint violations, a check on the entire table is required.
If any of the following tables exist, they will also be placed in check pending
state with the child table:
v Any descendent materialized query tables for the child table
v Any descendent staging tables for the child table
v Any descendent foreign key tables of the child table

These tables will require full processing to bring them out of the check
pending state. If you roll both table spaces forward simultaneously, the
constraint will remain active at the end of the point-in-time rollforward
operation.

Chapter 4. Rollforward Recovery 125

Ensure that a point-in-time table space rollforward operation does not cause a
transaction to be rolled back in some table spaces, and committed in others.
This can happen if:
v A point-in-time rollforward operation is performed on a subset of the table

spaces that were updated by a transaction, and that point in time precedes
the time at which the transaction was committed.

v Any table contained in the table space being rolled forward to a point in
time has an associated trigger, or is updated by a trigger that affects table
spaces other than the one that is being rolled forward.

The solution is to find a suitable point in time that will prevent this from
happening.

You can issue the QUIESCE TABLESPACES FOR TABLE command to create a
transaction-consistent point in time for rolling table spaces forward. The
quiesce request (in share, intent to update, or exclusive mode) waits (through
locking) for all running transactions against those table spaces to complete,
and blocks new requests. When the quiesce request is granted, the table
spaces are in a consistent state. To determine a suitable time to stop the
rollforward operation, you can look in the recovery history file to find quiesce
points, and check whether they occur after the minimum recovery time.

After a table space point-in-time rollforward operation completes, the table
space is put in backup pending state. You must take a backup of the table
space, because all updates made to it between the point in time to which you
rolled forward and the current time have been removed. You can no longer
roll the table space forward to the current time from a previous database- or
table space-level backup image. The following example shows why the table
space-level backup image is required, and how it is used. (To make the table
space available, you can either back up the entire database, the table space
that is in backup pending state, or a set of table spaces that includes the table
space that is in backup pending state.)

126 Data Recovery and High Availability Guide and Reference

In the preceding example, the database is backed up at time T1. Then, at time
T3, table space TABSP1 is rolled forward to a specific point in time (T2), The
table space is backed up after time T3. Because the table space is in backup
pending state, this backup operation is mandatory. The time stamp of the
table space backup image is after time T3, but the table space is at time T2.
Log records from between T2 and T3 are not applied to TABSP1. At time T4,
the database is restored, using the backup image created at T1, and rolled
forward to the end of the logs. Table space TABSP1 is put in restore pending
state at time T3, because the database manager assumes that operations were
performed on TABSP1 between T3 and T4 without the log changes between
T2 and T3 having been applied to the table space. If these log changes were in
fact applied as part of the rollforward operation against the database, this
assumption would be incorrect. The table space-level backup that must be
taken after the table space is rolled forward to a point in time allows you to
roll that table space forward past a previous point-in-time rollforward
operation (T3 in the example).

Assuming that you want to recover table space TABSP1 to T4, you would
restore the table space from a backup image that was taken after T3 (either
the required backup, or a later one), then roll TABSP1 forward to the end of
the logs.

In the preceding example, the most efficient way of restoring the database to
time T4 would be to perform the required steps in the following order:
1. Restore the database.
2. Restore the table space.
3. Roll the database forward.
4. Roll the table space forward.

Database Time of rollforward of Restore
backup table space TABSP1 to database.

T2. Back up TABSP1. Roll forward
to end of logs.

T1 T2 T3 T4
| | | |
| | | |
|---

| Logs are not
applied to TABSP1
between T2 and T3
when it is rolled
forward to T2.

Figure 15. Table Space Backup Requirement

Chapter 4. Rollforward Recovery 127

Because you restore the table space before rolling the database forward,
resource is not used to apply log records to the table space when the database
is rolled forward.

If you cannot find the TABSP1 backup image that follows time T3, or you
want to restore TABSP1 to T3 (or earlier), you can:
v Roll the table space forward to T3. You do not need to restore the table

space again, because it was restored from the database backup image.
v Restore the table space again, using the database backup taken at time T1,

then roll the table space forward to a time that precedes time T3.
v Drop the table space.

In a partitioned database environment:
v You must simultaneously roll all parts of a table space forward to the same

point in time at the same time. This ensures that the table space is
consistent across database partitions.

v If some database partitions are in rollforward pending state, and on other
database partitions, some table spaces are in rollforward pending state (but
the database partitions are not), you must first roll the database partitions
forward, and then roll the table spaces forward.

v If you intend to roll a table space forward to the end of the logs, you do
not have to restore it at each database partition; you only need to restore it
at the database partitions that require recovery. If you intend to roll a table
space forward to a point in time, however, you must restore it at each
database partition.

Related concepts:

v “Using the Load Copy Location File” on page 130

Related reference:

v “ROLLFORWARD DATABASE” on page 134

Recovering a Dropped Table

You may occasionally drop a table whose data you still need. If this is the
case, you should consider making your critical tables recoverable following a
drop table operation.

You could recover the table data by invoking a database restore operation,
followed by a database rollforward operation to a point in time before the
table was dropped. This may be time consuming if the database is large, and
your data will be unavailable during recovery.

128 Data Recovery and High Availability Guide and Reference

DB2’s dropped table recovery feature lets you recover your dropped table
data using table space-level restore and rollforward operations. This will be
faster than database-level recovery, and your database will remain available to
users.

Prerequisites:

For a dropped table to be recoverable, the table space in which the table
resides must have the DROPPED TABLE RECOVERY option turned on. This
can be done during table space creation, or by invoking the ALTER
TABLESPACE statement. The DROPPED TABLE RECOVERY option is table
space-specific and limited to regular table spaces. To determine if a table
space is enabled for dropped table recovery, you can query the
DROP_RECOVERY column in the SYSCAT.TABLESPACES catalog table.
Dropped table recovery is enabled by default for newly created data table
spaces.

When a DROP TABLE statement is run against a table whose table space is
enabled for dropped table recovery, an additional entry (identifying the
dropped table) is made in the log files. An entry is also made in the recovery
history file, containing information that can be used to recreate the table.

Restrictions:

There are some restrictions on the type of data that is recoverable from a
dropped table. It is not possible to recover:
v Large object (LOB) or long field data. The DROPPED TABLE RECOVERY

option is not supported for large table spaces. If you attempt to recover a
dropped table that contains LOB or LONG VARCHAR columns, these
columns will be set to NULL in the generated export file. The DROPPED
TABLE RECOVERY option can only be used for regular table spaces, not
for temporary or large table spaces.

v The metadata associated with row types. (The data is recovered, but not the
metadata.) The data in the hierarchy table of the typed table will be
recovered. This data may contain more information than appeared in the
typed table that was dropped.

Procedure:

Only one dropped table can be recovered at a time. You can recover a
dropped table by doing the following:
1. Identify the dropped table by invoking the LIST HISTORY DROPPED

TABLE command. The dropped table ID is listed in the Backup ID
column.

Chapter 4. Rollforward Recovery 129

2. Restore a database- or table space-level backup image taken before the
table was dropped.

3. Create an export directory to which files containing the table data are to
be written. This directory must either be accessible to all database
partitions, or exist on each partition. Subdirectories under this export
directory are created automatically by each database partition. These
subdirectories are named NODEnnnn, where nnnn represents the database
partition or node number. Data files containing the dropped table data as
it existed on each database partition are exported to a lower subdirectory
called data. For example, \export_directory\NODE0000\data.

4. Roll forward to a point in time after the table was dropped, using the
RECOVER DROPPED TABLE option on the ROLLFORWARD DATABASE
command. Alternatively, roll forward to the end of the logs, so that
updates to other tables in the table space or database are not lost.

5. Recreate the table using the CREATE TABLE statement from the recovery
history file.

6. Import the table data that was exported during the rollforward operation
into the table.

The names of linked files associated with DATALINK columns can be
recovered. After importing the table data, the table should be reconciled with
the DB2 Data Links Manager. Backup images of the files may or may not be
restored by the DB2 Data Links Manager, depending on whether garbage
collection has already deleted them.

Related reference:

v “ALTER TABLESPACE statement” in the SQL Reference, Volume 2

v “CREATE TABLE statement” in the SQL Reference, Volume 2

v “ROLLFORWARD DATABASE” on page 134
v “LIST HISTORY” on page 228

Using the Load Copy Location File

The DB2LOADREC registry variable is used to identify the file with the load
copy location information. This file is used during rollforward recovery to
locate the load copy. It has information about:
v Media type
v Number of media devices to be used
v Location of the load copy generated during a table load operation
v File name of the load copy, if applicable

130 Data Recovery and High Availability Guide and Reference

If the location file does not exist, or no matching entry is found in the file, the
information from the log record is used.

The information in the file may be overwritten before rollforward recovery
takes place.

Notes:

1. In a partitioned database environment, the DB2LOADREC registry
variable must be set for all the database partition servers using the db2set
command.

2. In a partitioned database environment, the load copy file must exist at
each database partition server, and the file name (including the path) must
be the same.

3. If an entry in the file identified by the DB2LOADREC registry variable is
not valid, the old load copy location file is used to provide information to
replace the invalid entry.

The following information is provided in the location file. The first five
parameters must have valid values, and are used to identify the load copy.
The entire structure is repeated for each load copy recorded. For example:
TIMestamp 19950725182542 * Time stamp generated at load time
SCHema PAYROLL * Schema of table loaded
TABlename EMPLOYEES * Table name
DATabasename DBT * Database name
DB2instance TORONTO * DB2INSTANCE
BUFfernumber NULL * Number of buffers to be used for

recovery
SESsionnumber NULL * Number of sessions to be used for

recovery
TYPeofmedia L * Type of media - L for local device

A for TSM
O for other vendors

LOCationnumber 3 * Number of locations
ENTry /u/toronto/dbt.payroll.employes.001
ENT /u/toronto/dbt.payroll.employes.002
ENT /dev/rmt0

TIM 19950725192054
SCH PAYROLL
TAB DEPT
DAT DBT
DB2® TORONTO
SES NULL
BUF NULL
TYP A
TIM 19940325192054
SCH PAYROLL
TAB DEPT
DAT DBT
DB2 TORONTO
SES NULL

Chapter 4. Rollforward Recovery 131

BUF NULL
TYP O
SHRlib /@sys/lib/backup_vendor.a

Notes:

1. The first three characters in each keyword are significant. All keywords are
required in the specified order. Blank lines are not accepted.

2. The time stamp is in the form yyyymmddhhmmss.
3. All fields are mandatory, except for BUF and SES, which can be NULL. If

SES is NULL, the value specified by the numloadrecses configuration
parameter is used. If BUF is NULL, the default value is SES+2.

4. If even one of the entries in the location file is invalid, the previous load
copy location file is used to provide those values.

5. The media type can be local device (L for tape, disk or diskettes), TSM (A),
or other vendor (O). If the type is L, the number of locations, followed by
the location entries, is required. If the type is A, no further input is
required. If the type is O, the shared library name is required.

6. The SHRlib parameter points to a library that has a function to store the
load copy data.

7. If you invoke a load operation, specifying the COPY NO or the
NONRECOVERABLE option, and do not take a backup copy of the
database or affected table spaces after the operation completes, you cannot
restore the database or table spaces to a point in time that follows the load
operation. That is, you cannot use rollforward recovery to rebuild the
database or table spaces to the state they were in following the load
operation. You can only restore the database or table spaces to a point in
time that precedes the load operation.

If you want to use a particular load copy, you can use the recovery history file
for the database to determine the time stamp for that specific load operation.
In a partitioned database environment, the recovery history file is local to each
database partition.

Related reference:

v Appendix F, “Tivoli Storage Manager” on page 319

Synchronizing Clocks in a Partitioned Database System

You should maintain relatively synchronized system clocks across the
database partition servers to ensure smooth database operations and
unlimited forward recoverability. Time differences among the database
partition servers, plus any potential operational and communications delays

132 Data Recovery and High Availability Guide and Reference

for a transaction should be less than the value specified for the max_time_diff
(maximum time difference among nodes) database manager configuration
parameter.

To ensure that the log record time stamps reflect the sequence of transactions
in a partitioned database system, DB2® uses the system clock on each machine
as the basis for the time stamps in the log records. If, however, the system
clock is set ahead, the log clock is automatically set ahead with it. Although
the system clock can be set back, the clock for the logs cannot, and remains at
the same advanced time until the system clock matches this time. The clocks
are then in synchrony. The implication of this is that a short term system clock
error on a database node can have a long lasting effect on the time stamps of
database logs.

For example, assume that the system clock on database partition server A is
mistakenly set to November 7, 1999 when the year is 1997, and assume that
the mistake is corrected after an update transaction is committed in the
partition at that database partition server. If the database is in continual use,
and is regularly updated over time, any point between November 7, 1997 and
November 7, 1999 is virtually unreachable through rollforward recovery.
When the COMMIT on database partition server A completes, the time stamp
in the database log is set to 1999, and the log clock remains at November 7,
1999 until the system clock matches this time. If you attempt to roll forward
to a point in time within this time frame, the operation will stop at the first
time stamp that is beyond the specified stop point, which is November 7,
1997.

Although DB2 cannot control updates to the system clock, the max_time_diff
database manager configuration parameter reduces the chances of this type of
problem occurring:
v The configurable values for this parameter range from 1 minute to 24

hours.
v When the first connection request is made to a non-catalog node, the

database partition server sends its time to the catalog node for the database.
The catalog node then checks that the time on the node requesting the
connection, and its own time are within the range specified by the
max_time_diff parameter. If this range is exceeded, the connection is refused.

v An update transaction that involves more than two database partition
servers in the database must verify that the clocks on the participating
database partition servers are in synchrony before the update can be
committed. If two or more database partition servers have a time difference
that exceeds the limit allowed by max_time_diff, the transaction is rolled
back to prevent the incorrect time from being propagated to other database
partition servers.

Chapter 4. Rollforward Recovery 133

Related reference:

v “Maximum Time Difference Among Nodes configuration parameter -
max_time_diff” in the Administration Guide: Performance

Client/Server Timestamp Conversion

This section explains the generation of timestamps in a client/server
environment:
v If you specify a local time for a rollforward operation, all messages

returned will also be in local time.

Note: All times are converted on the server and (in partitioned database
environments) on the catalog node.

v The timestamp string is converted to GMT on the server, so the time
represents the server’s time zone, not the client’s. If the client is in a
different time zone from the server, the server’s local time should be used.

v If the timestamp string is close to the time change due to daylight savings
time, it is important to know whether the stop time is before or after the
time change so that it is specified correctly.

Related concepts:

v “Rollforward Overview” on page 119
v “Synchronizing Clocks in a Partitioned Database System” on page 132

ROLLFORWARD DATABASE

Recovers a database by applying transactions recorded in the database log
files. Invoked after a database or a table space backup image has been
restored, or if any table spaces have been taken offline by the database due to
a media error. The database must be recoverable (that is, either logretain,
userexit, or both of these database configuration parameters must be enabled)
before the database can be rollforward recovered.

Scope:

In a partitioned database environment, this command can only be invoked
from the catalog partition. A database or table space rollforward operation to
a specified point in time affects all partitions that are listed in the
db2nodes.cfg file. A database or table space rollforward operation to the end
of logs affects the partitions that are specified. If no partitions are specified, it
affects all partitions that are listed in the db2nodes.cfg file; if rollforward
recovery is not needed on a particular partition, that partition is ignored.

134 Data Recovery and High Availability Guide and Reference

Authorization:

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection:

None. This command establishes a database connection.

Command syntax:

II ROLLFORWARD DATABASE database-alias
DB USER username

USING password

I

I
TO isotime

USING LOCAL TIME ON ALL DBPARTITIONNUMS AND COMPLETE
END OF LOGS AND STOP

On Database Partition clause
COMPLETE
STOP On Database Partition clause
CANCEL
QUERY STATUS

USING LOCAL TIME

I

I

K

TABLESPACE ONLINE
,

(tablespace-name)
ONLINE

I

I
OVERFLOW LOG PATH (log-directory)

, Log Overflow clause

I

I
NORETRIEVE RECOVER DROPPED TABLE drop-table-id TO export-directory

IM

On Database Partition clause:

ON Database Partition List clause
ALL DBPARTITIONNUMS

EXCEPT Database Partition List clause

ROLLFORWARD DATABASE

Chapter 4. Rollforward Recovery 135

Database Partition List clause:

DBPARTITIONNUM
DBPARTITIONNUMS

(K

,

db-partition-number1
TO db-partition-number2

I

I)

Log Overflow clause:

K

,

log-directory ON DBPARTITIONNUM db-partition-number1

Command parameters:

DATABASE database-alias
The alias of the database that is to be rollforward recovered.

USER username
The user name under which the database is to be rollforward
recovered.

USING password
The password used to authenticate the user name. If the password is
omitted, the user is prompted to enter it.

TO

isotime
The point in time to which all committed transactions are to
be rolled forward (including the transaction committed
precisely at that time, as well as all transactions committed
previously).

This value is specified as a time stamp, a 7-part character
string that identifies a combined date and time. The format is
yyyy-mm-dd-hh.mm.ss.nnnnnn (year, month, day, hour, minutes,
seconds, microseconds), expressed in Coordinated Universal
Time (UTC). UTC helps to avoid having the same time stamp
associated with different logs (because of a change in time
associated with daylight savings time, for example). The time
stamp in a backup image is based on the local time at which
the backup operation started. The CURRENT TIMEZONE
special register specifies the difference between UTC and local
time at the application server. The difference is represented by
a time duration (a decimal number in which the first two

ROLLFORWARD DATABASE

136 Data Recovery and High Availability Guide and Reference

digits represent the number of hours, the next two digits
represent the number of minutes, and the last two digits
represent the number of seconds). Subtracting CURRENT
TIMEZONE from a local time converts that local time to UTC.

USING LOCAL TIME
Allows the user to rollforward to a point in time that is the
user’s local time rather than GMT time. This makes it easier
for users to rollforward to a specific point in time on their
local machines, and eliminates potential user errors due to the
translation of local to GMT time.

Notes:

1. If the user specifies a local time for rollforward, all
messages returned to the user will also be in local time.
Note that all times are converted on the server, and if
MPP, on the catalog database partition.

2. The timestamp string is converted to GMT on the server,
so the time is local to the server’s time zone, not the
client’s. If the client is in one time zone and the server in
another, the server’s local time should be used. This is
different from the local time option from the Control
Center, which is local to the client.

3. If the timestamp string is close to the time change of the
clock due to daylight savings, it is important to know if
the stop time is before or after the clock change, and
specify it correctly.

END OF LOGS
Specifies that all committed transactions from all online
archive log files listed in the database configuration parameter
logpath are to be applied.

ALL DBPARTITIONNUMS
Specifies that transactions are to be rolled forward on all partitions
specified in the db2nodes.cfg file. This is the default if a database
partition clause is not specified.

EXCEPT
Specifies that transactions are to be rolled forward on all partitions
specified in the db2nodes.cfg file, except those specified in the
database partition list.

ON DBPARTITIONNUM / ON DBPARTITIONNUMS
Roll the database forward on a set of database partitions.

db-partition-number1
Specifies a database partition number in the database partition list.

ROLLFORWARD DATABASE

Chapter 4. Rollforward Recovery 137

db-partition-number2
Specifies the second database partition number, so that all partitions
from db-partition-number1 up to and including db-partition-number2 are
included in the database partition list.

COMPLETE / STOP
Stops the rolling forward of log records, and completes the
rollforward recovery process by rolling back any incomplete
transactions and turning off the rollforward pending state of the
database. This allows access to the database or table spaces that are
being rolled forward. These keywords are equivalent; specify one or
the other, but not both. The keyword AND permits specification of
multiple operations at once; for example, db2 rollforward db sample
to end of logs and complete.

Note: When rolling table spaces forward to a point in time, the table
spaces are placed in backup pending state.

CANCEL
Cancels the rollforward recovery operation. This puts the database or
one or more table spaces on all partitions on which forward recovery
has been started in restore pending state:
v If a database rollforward operation is not in progress (that is, the

database is in rollforward pending state), this option puts the
database in restore pending state.

v If a table space rollforward operation is not in progress (that is, the
table spaces are in rollforward pending state), a table space list
must be specified. All table spaces in the list are put in restore
pending state.

v If a table space rollforward operation is in progress (that is, at least
one table space is in rollforward in progress state), all table spaces
that are in rollforward in progress state are put in restore pending
state. If a table space list is specified, it must include all table spaces
that are in rollforward in progress state. All table spaces on the list
are put in restore pending state.

v If rolling forward to a point in time, any table space name that is
passed in is ignored, and all table spaces that are in rollforward in
progress state are put in restore pending state.

v If rolling forward to the end of the logs with a table space list, only
the table spaces listed are put in restore pending state.

This option cannot be used to cancel a rollforward operation that is
actually running. It can only be used to cancel a rollforward operation
that is in progress but not actually running at the time. A rollforward
operation can be in progress but not running if:

ROLLFORWARD DATABASE

138 Data Recovery and High Availability Guide and Reference

v It terminated abnormally.
v The STOP option was not specified.
v An error caused it to fail. Some errors, such as rolling forward

through a non-recoverable load operation, can put a table space into
restore pending state.

Note: Use this option with caution, and only if the rollforward
operation that is in progress cannot be completed because some
of the table spaces have been put in rollforward pending state
or in restore pending state. When in doubt, use the LIST
TABLESPACES command to identify the table spaces that are in
rollforward in progress state, or in rollforward pending state.

QUERY STATUS
Lists the log files that the database manager has rolled forward, the
next archive file required, and the time stamp (in CUT) of the last
committed transaction since rollforward processing began. In a
partitioned database environment, this status information is returned
for each partition. The information returned contains the following
fields:

Database partition number

Rollforward status
Status can be: database or table space rollforward pending,
database or table space rollforward in progress, database or
table space rollforward processing STOP, or not pending.

Next log file to be read
A string containing the name of the next required log file. In a
partitioned database environment, use this information if the
rollforward utility fails with a return code indicating that a
log file is missing or that a log information mismatch has
occurred.

Log files processed
A string containing the names of processed log files that are
no longer needed for recovery, and that can be removed from
the directory. If, for example, the oldest uncommitted
transaction starts in log file x, the range of obsolete log files
will not include x; the range ends at x - 1.

Last committed transaction
A string containing a time stamp in ISO format
(yyyy-mm-dd-hh.mm.ss). This time stamp marks the last
transaction committed after the completion of rollforward
recovery. The time stamp applies to the database. For table

ROLLFORWARD DATABASE

Chapter 4. Rollforward Recovery 139

space rollforward recovery, it is the time stamp of the last
transaction committed to the database.

Note: QUERY STATUS is the default value if the TO, STOP,
COMPLETE, or CANCEL clauses are omitted. If TO, STOP, or
COMPLETE was specified, status information is displayed if
the command has completed successfully. If individual table
spaces are specified, they are ignored; the status request does
not apply only to specified table spaces.

TABLESPACE
This keyword is specified for table space-level rollforward recovery.

tablespace-name
Mandatory for table space-level rollforward recovery to a point in
time. Allows a subset of table spaces to be specified for rollforward
recovery to the end of the logs. In a partitioned database environment,
each table space in the list does not have to exist at each partition that
is rolling forward. If it does exist, it must be in the correct state.

ONLINE
This keyword is specified to allow table space-level rollforward
recovery to be done online. This means that other agents are allowed
to connect while rollforward recovery is in progress.

OVERFLOW LOG PATH log-directory
Specifies an alternate log path to be searched for archived logs during
recovery. Use this parameter if log files were moved to a location
other than that specified by the logpath database configuration
parameter. In a partitioned database environment, this is the (fully
qualified) default overflow log path for all partitions. A relative
overflow log path can be specified for single-partition databases.

Note: The OVERFLOW LOG PATH command parameter will
overwrite the value (if any) of the database configuration
parameter OVERFLOWLOGPATH.

log-directory ON DBPARTITIONNUM
In a partitioned database environment, allows a different log path to
override the default overflow log path for a specific partition.

NORETRIEVE
Allows the user to control which log files to be rolled forward on the
standby machine by allowing the user to disable the retrieval of
archived logs. The benefits of this are:
v By controlling the logfiles to be rolled forward, one can ensure that

the standby machine is X hours behind the production machine, to
prevent the user affecting both systems.

ROLLFORWARD DATABASE

140 Data Recovery and High Availability Guide and Reference

v If the standby system does not have access to archive (eg. if TSM is
the archive, it only allows the original machine to retrieve the files)

v It might also be possible that while the production system is
archiving a file, the standby system is retrieving the same file, and
it might then get an incomplete log file. Noretrieve would solve this
problem.

RECOVER DROPPED TABLE drop-table-id
Recovers a dropped table during the rollforward operation. The table
ID can be obtained using the LIST HISTORY command.

TO export-directory
Specifies a directory to which files containing the table data are to be
written. The directory must be accessible to all database partitions.

Examples:

Example 1

The ROLLFORWARD DATABASE command permits specification of multiple
operations at once, each being separated with the keyword AND. For example,
to roll forward to the end of logs, and complete, the separate commands:

db2 rollforward db sample to end of logs
db2 rollforward db sample complete

can be combined as follows:
db2 rollforward db sample to end of logs and complete

Although the two are equivalent, it is recommended that such operations be
done in two steps. It is important to verify that the rollforward operation has
progressed as expected, before stopping it and possibly missing logs. This is
especially important if a bad log is found during rollforward recovery, and the
bad log is interpreted to mean the “end of logs”. In such cases, an undamaged
backup copy of that log could be used to continue the rollforward operation
through more logs.

Example 2

Roll forward to the end of the logs (two table spaces have been restored):
db2 rollforward db sample to end of logs
db2 rollforward db sample to end of logs and stop

These two statements are equivalent. Neither AND STOP or AND
COMPLETE is needed for table space rollforward recovery to the end of the
logs. Table space names are not required. If not specified, all table spaces
requiring rollforward recovery will be included. If only a subset of these table
spaces is to be rolled forward, their names must be specified.

ROLLFORWARD DATABASE

Chapter 4. Rollforward Recovery 141

Example 3

After three table spaces have been restored, roll one forward to the end of the
logs, and the other two to a point in time, both to be done online:

db2 rollforward db sample to end of logs tablespace(TBS1) online

db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop
tablespace(TBS2, TBS3) online

Note that two rollforward operations cannot be run concurrently. The second
command can only be invoked after the first rollforward operation completes
successfully.

Example 4

After restoring the database, roll forward to a point in time, using
OVERFLOW LOG PATH to specify the directory where the user exit saves
archived logs:

db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop
overflow log path (/logs)

Example 5 (MPP)

There are three database partitions: 0, 1, and 2. Table space TBS1 is defined on
all partitions, and table space TBS2 is defined on partitions 0 and 2. After
restoring the database on database partition 1, and TBS1 on database
partitions 0 and 2, roll the database forward on database partition 1:

db2 rollforward db sample to end of logs and stop

This returns warning SQL1271 (“Database is recovered but one or more table
spaces are off-line on database partition(s) 0 and 2.”).

db2 rollforward db sample to end of logs

This rolls TBS1 forward on database partitions 0 and 2. The clause
TABLESPACE(TBS1) is optional in this case.

Example 6 (MPP)

After restoring table space TBS1 on database partitions 0 and 2 only, roll TBS1
forward on database partitions 0 and 2:

db2 rollforward db sample to end of logs

Database partition 1 is ignored.
db2 rollforward db sample to end of logs tablespace(TBS1)

ROLLFORWARD DATABASE

142 Data Recovery and High Availability Guide and Reference

This fails, because TBS1 is not ready for rollforward recovery on database
partition 1. Reports SQL4906N.

db2 rollforward db sample to end of logs on dbpartitionnums (0, 2)
tablespace(TBS1)

This completes successfully.
db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop

tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database
partition 1; all pieces must be rolled forward together.

Note: With table space rollforward to a point in time, the database partition
clause is not accepted. The rollforward operation must take place on all
the database partitions on which the table space resides.

After restoring TBS1 on database partition 1:
db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop

tablespace(TBS1)

This completes successfully.

Example 7 (partitioned database environment)

After restoring a table space on all database partitions, roll forward to PIT2,
but do not specify AND STOP. The rollforward operation is still in progress.
Cancel and roll forward to PIT1:

db2 rollforward db sample to pit2 tablespace(TBS1)
db2 rollforward db sample cancel tablespace(TBS1)

** restore TBS1 on all database partitions **

db2 rollforward db sample to pit1 tablespace(TBS1)
db2 rollforward db sample stop tablespace(TBS1)

Example 8 (MPP)

Rollforward recover a table space that resides on eight database partitions (3
to 10) listed in the db2nodes.cfg file:

db2 rollforward database dwtest to end of logs tablespace (tssprodt)

This operation to the end of logs (not point in time) completes successfully.
The database partitions on which the table space resides do not have to be
specified. The utility defaults to the db2nodes.cfg file.

Example 9 (partitioned database environment)

ROLLFORWARD DATABASE

Chapter 4. Rollforward Recovery 143

Rollforward recover six small table spaces that reside on a single-partition
database partition group (on database partition 6):

db2 rollforward database dwtest to end of logs on dbpartitionnum (6)
tablespace(tsstore, tssbuyer, tsstime, tsswhse, tsslscat, tssvendor)

This operation to the end of logs (not point in time) completes successfully.

Usage notes:

If restoring from an image that was created during an online backup
operation, the specified point in time for the rollforward operation must be
later than the time at which the online backup operation completed. If the
rollforward operation is stopped before it passes this point, the database is left
in rollforward pending state. If a table space is in the process of being rolled
forward, it is left in rollforward in progress state.

If one or more table spaces is being rolled forward to a point in time, the
rollforward operation must continue at least to the minimum recovery time,
which is the last update to the system catalogs for this table space or its
tables. The minimum recovery time (in Coordinated Universal Time, or UTC)
for a table space can be retrieved using the LIST TABLESPACES SHOW
DETAIL command.

Rolling databases forward may require a load recovery using tape devices. If
prompted for another tape, the user can respond with one of the following:

c Continue. Continue using the device that generated the warning
message (for example, when a new tape has been mounted)

d Device terminate. Stop using the device that generated the warning
message (for example, when there are no more tapes)

t Terminate. Terminate all devices.

If the rollforward utility cannot find the next log that it needs, the log name is
returned in the SQLCA, and rollforward recovery stops. If no more logs are
available, use the STOP option to terminate rollforward recovery. Incomplete
transactions are rolled back to ensure that the database or table space is left in
a consistent state.

Compatibilities:

For compatibility with versions earlier than Version 8:
v The keyword NODE can be substituted for DBPARTITIONNUM.
v The keyword NODES can be substituted for DBPARTITIONNUMS.

Related reference:

ROLLFORWARD DATABASE

144 Data Recovery and High Availability Guide and Reference

v “BACKUP DATABASE” on page 72
v “RESTORE DATABASE” on page 95

db2Rollforward - Rollforward Database

Recovers a database by applying transactions recorded in the database log
files. Called after a database or a table space backup has been restored, or if
any table spaces have been taken offline by the database due to a media error.
The database must be recoverable (that is, either logretain, userexit, or both of
these database configuration parameters must be set on) before the database
can be recovered with roll-forward recovery.

Scope:

In a partitioned database environment, this API can only be called from the
catalog partition. A database or table space rollforward call specifying a
point-in-time affects all database partition servers that are listed in the
db2nodes.cfg file. A database or table space rollforward call specifying end of
logs affects the database partition servers that are specified. If no database
partition servers are specified, it affects all database partition servers that are
listed in the db2nodes.cfg file; if no roll forward is needed on a particular
database partition server, that database partition server is ignored.

Authorization:

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection:

None. This API establishes a database connection.

API include file:

db2ApiDf.h

C API syntax:

ROLLFORWARD DATABASE

Chapter 4. Rollforward Recovery 145

Generic API syntax:

/* File: db2ApiDf.h */
/* API: db2Rollforward */
/* ... */
SQL_API_RC SQL_API_FN
db2Rollforward_api (

db2Uint32 versionNumber,
void *pDB2RollforwardStruct,
struct sqlca *pSqlca);

typedef SQL_STRUCTURE db2RollforwardStruct
{

struct db2RfwdInputStruct *roll_input;
struct db2RfwdOutputStruct *roll_output;

} db2RollforwardStruct;

typedef SQL_STRUCTURE db2RfwdInputStruct
{

sqluint32 version;
char *pDbAlias;
db2Uint32 CallerAction;
char *pStopTime;
char *pUserName;
char *pPassword;
char *pOverflowLogPath;
db2Uint32 NumChngLgOvrflw;
struct sqlurf_newlogpath *pChngLogOvrflw;
db2Uint32 ConnectMode;
struct sqlu_tablespace_bkrst_list *pTablespaceList;
db2int32 AllNodeFlag;
db2int32 NumNodes;
SQL_PDB_NODE_TYPE *pNodeList;
db2int32 NumNodeInfo;
char *pDroppedTblID;
char *pExportDir;
db2Uint32 RollforwardFlags;

} db2RfwdInputStruct;

typedef SQL_STRUCTURE db2RfwdOutputStruct
{

char *pApplicationId;
sqlint32 *pNumReplies;
struct sqlurf_info *pNodeInfo;

} db2RfwdOutputStruct;
/* ... */

db2Rollforward - Rollforward Database

146 Data Recovery and High Availability Guide and Reference

API parameters:

/* File: db2ApiDf.h */
/* API: db2Rollforward */
/* ... */
SQL_API_RC SQL_API_FN
db2gRollforward_api (

db2Uint32 versionNumber,
void *pDB2gRollforwardStruct,
struct sqlca *pSqlca);

typedef SQL_STRUCTURE db2gRollforwardStruct
{

struct db2gRfwdInputStruct *roll_input;
struct db2RfwdOutputStruct *roll_output;

} db2gRollforwardStruct;

SQL_STRUCTURE db2gRfwdInputStruct
{

db2Uint32 DbAliasLen;
db2Uint32 StopTimeLen;
db2Uint32 UserNameLen;
db2Uint32 PasswordLen;
db2Uint32 OvrflwLogPathLen;
db2Uint32 DroppedTblIDLen;
db2Uint32 ExportDirLen;
sqluint32 Version;
char *pDbAlias;
db2Uint32 CallerAction;
char *pStopTime;
char *pUserName;
char *pPassword;
char *pOverflowLogPath;
db2Uint32 NumChngLgOvrflw;
struct sqlurf_newlogpath *pChngLogOvrflw;
db2Uint32 ConnectMode;
struct sqlu_tablespace_bkrst_list *pTablespaceList;
db2int32 AllNodeFlag;
db2int32 NumNodes;
SQL_PDB_NODE_TYPE *pNodeList;
db2int32 NumNodeInfo;
char *pDroppedTblID;
char *pExportDir;
db2Uint32 RollforwardFlags;

};

typedef SQL_STRUCTURE db2RfwdOutputStruct
{

char *pApplicationId;
sqlint32 *pNumReplies;
struct sqlurf_info *pNodeInfo;

} db2RfwdOutputStruct;
/* ... */

db2Rollforward - Rollforward Database

Chapter 4. Rollforward Recovery 147

versionNumber
Input. Specifies the version and release level of the structure passed as
the second parameter.

pDB2RollforwardStruct
Input. A pointer to the db2RollforwardStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

roll_input
Input. A pointer to the db2RfwdInputStruct structure.

roll_output
Output. A pointer to the db2RfwdOutputStruct structure.

DbAliasLen
Input. Specifies the length in bytes of the database alias.

StopTimeLen
Input. Specifies the length in bytes of the stop time parameter. Set to
zero if no stop time is provided.

UserNameLen
Input. Specifies the length in bytes of the user name. Set to zero if no
user name is provided.

PasswordLen
Input. Specifies the length in bytes of the password. Set to zero if no
password is provided.

OverflowLogPathLen
Input. Specifies the length in bytes of the overflow log path. Set to
zero if no overflow log path is provided.

Version
Input. The version ID of the rollforward parameters. It is defined as
SQLUM_RFWD_VERSION.

pDbAlias
Input. A string containing the database alias. This is the alias that is
cataloged in the system database directory.

CallerAction
Input. Specifies action to be taken. Valid values (defined in sqlutil)
are:

SQLUM_ROLLFWD
Rollforward to the point in time specified by pPointInTime. For
database rollforward, the database is left in rollforward-pending
state. For table space rollforward to a point in time, the table
spaces are left in rollforward-in-progress state.

db2Rollforward - Rollforward Database

148 Data Recovery and High Availability Guide and Reference

SQLUM_STOP
End roll-forward recovery. No new log records are processed
and uncommitted transactions are backed out. The
rollforward-pending state of the database or table spaces is
turned off. Synonym is SQLUM_COMPLETE.

SQLUM_ROLLFWD_STOP
Rollforward to the point in time specified by pPointInTime,
and end roll-forward recovery. The rollforward-pending state of
the database or table spaces is turned off. Synonym is
SQLUM_ROLLFWD_COMPLETE.

SQLUM_QUERY
Query values for pNextArcFileName, pFirstDelArcFileName,
pLastDelArcFileName, and pLastCommitTime. Return database
status and a node number.

SQLUM_PARM_CHECK
Validate parameters without performing the roll forward.

SQLUM_CANCEL
Cancel the rollforward operation that is currently running.
The database or table space are put in recovery pending state.

Note: This option cannot be used while the rollforward is
actually running. It can be used if the rollforward is
paused (that is, waiting for a STOP), or if a system
failure occurred during the rollforward. It should be
used with caution.

Rolling databases forward may require a load recovery using tape
devices. The rollforward API will return with a warning message if
user intervention on a device is required. The API can be called again
with one of the following three caller actions:

SQLUM_LOADREC_CONTINUE
Continue using the device that generated the warning
message (for example, when a new tape has been mounted).

SQLUM_LOADREC_DEVICE_TERMINATE
Stop using the device that generated the warning message (for
example, when there are no more tapes).

SQLUM_LOADREC_TERMINATE
Terminate all devices being used by load recovery.

pStopTime
Input. A character string containing a time stamp in ISO format.
Database recovery will stop when this time stamp is exceeded. Specify
SQLUM_INFINITY_TIMESTAMP to roll forward as far as possible.

db2Rollforward - Rollforward Database

Chapter 4. Rollforward Recovery 149

May be NULL for SQLUM_QUERY, SQLUM_PARM_CHECK, and any of the load
recovery (SQLUM_LOADREC_xxx) caller actions.

pUserName
Input. A string containing the user name of the application. May be
NULL.

pPassword
Input. A string containing the password of the supplied user name (if
any). May be NULL.

pOverflowLogPath
Input. This parameter is used to specify an alternate log path to be
used. In addition to the active log files, archived log files need to be
moved (by the user) into the logpath before they can be used by this
utility. This can be a problem if the user does not have sufficient space
in the logpath. The overflow log path is provided for this reason.
During roll-forward recovery, the required log files are searched, first
in the logpath, and then in the overflow log path. The log files needed
for table space roll-forward recovery can be brought into either the
logpath or the overflow log path. If the caller does not specify an
overflow log path, the default value is the logpath. In a partitioned
database environment, the overflow log path must be a valid, fully
qualified path; the default path is the default overflow log path for
each node. In a single-partition database environment, the overflow
log path can be relative if the server is local.

NumChngLgOvrflw
Partitioned database environments only. The number of changed
overflow log paths. These new log paths override the default overflow
log path for the specified database partition server only.

pChngLogOvrflw
Partitioned database environments only. A pointer to a structure
containing the fully qualified names of changed overflow log paths.
These new log paths override the default overflow log path for the
specified database partition server only.

ConnectMode
Input. Valid values (defined in sqlutil) are:

SQLUM_OFFLINE
Offline roll forward. This value must be specified for database
roll-forward recovery.

SQLUM_ONLINE
Online roll forward.

pTablespaceList
Input. A pointer to a structure containing the names of the table

db2Rollforward - Rollforward Database

150 Data Recovery and High Availability Guide and Reference

spaces to be rolled forward to the end-of-logs or to a specific point in
time. If not specified, the table spaces needing rollforward will be
selected.

AllNodeFlag
Partitioned database environments only. Input. Indicates whether the
rollforward operation is to be applied to all database partition servers
defined in db2nodes.cfg. Valid values are:

SQLURF_NODE_LIST
Apply to database partition servers in a list that is passed in
pNodeList.

SQLURF_ALL_NODES
Apply to all database partition servers. pNodeList should be
NULL. This is the default value.

SQLURF_ALL_EXCEPT
Apply to all database partition servers except those in a list
that is passed in pNodeList.

SQLURF_CAT_NODE_ONLY
Apply to the catalog partition only. pNodeList should be
NULL.

NumNodes
Input. Specifies the number of database partition servers in the
pNodeList array.

pNodeList
Input. A pointer to an array of database partition server numbers on
which to perform the roll-forward recovery.

NumNodeInfo
Input. Defines the size of the output parameter pNodeInfo, which must
be large enough to hold status information from each database
partition that is being rolled forward. In a single-partition database
environment, this parameter should be set to 1. The value of this
parameter should be same as the number of database partition servers
for which this API is being called.

pDroppedTblID
Input. A string containing the ID of the dropped table whose recovery
is being attempted.

pExportDir
Input. The directory into which the dropped table data will be
exported.

db2Rollforward - Rollforward Database

Chapter 4. Rollforward Recovery 151

RollforwardFlags
Input. Specifies the rollforward flags. Valid values (defined in
sqlpapiRollforward):

SQLP_ROLLFORWARD_LOCAL_TIME
Allows the user to rollforward to a point in time that is the
user’s local time rather than GMT time. This makes it easier
for users to rollforward to a specific point in time on their
local machines, and eliminates potential user errors due to the
translation of local to GMT time.

SQLP_ROLLFORWARD_NO_RETRIEVE
Controls which log files to be rolled forward on the standby
machine by allowing the user to disable the retrieval of
archived logs. By controlling the log files to be rolled forward,
one can ensure that the standby machine is X hours behind
the production machine, to prevent the user affecting both
systems. This option is useful if the standby system does not
have access to archive, for example, if TSM is the archive, it
only allows the original machine to retrieve the files. It will
also remove the possibility that the standby system would
retrieve an incomplete log file while the production system is
archiving a file and the standby system is retrieving the same
file.

pApplicationId
Output. The application ID.

pNumReplies
Output. The number of replies received.

pNodeInfo
Output. Database partition reply information.

REXX API syntax:

db2Rollforward - Rollforward Database

152 Data Recovery and High Availability Guide and Reference

REXX API parameters:

database-alias
Alias of the database to be rolled forward.

value A compound REXX host variable containing the output values. In the
following, XXX represents the host variable name:

XXX.0 Number of elements in the variable

XXX.1 The application ID

XXX.2 Number of replies received from nodes

XXX.2.1.1 First database partition server number

XXX.2.1.2 First state information

XXX.2.1.3 First next archive file needed

XXX.2.1.4 First first archive file to be deleted

XXX.2.1.5 First last archive file to be deleted

XXX.2.1.6 First last commit time

XXX.2.2.1 Second database partition server number

XXX.2.2.2 Second state information

XXX.2.2.3 Second next archive file needed

XXX.2.2.4 Second first archive file to be deleted

XXX.2.2.5 Second last archive file to be deleted

XXX.2.2.6 Second last commit time

XXX.2.3.x and so on.

ROLLFORWARD DATABASE database-alias [USING :value] [USER username
USING password]
[rollforward_action_clause | load_recovery_action_clause]
where rollforward_action_clause stands for:

{ TO point-in-time [AND STOP] |
{

[TO END OF LOGS [AND STOP] | STOP | CANCEL | QUERY STATUS
| PARM CHECK }
[ON {:nodelist | ALL NODES [EXCEPT :nodelist]}]

}
}
[TABLESPACE {ONLINE |:tablespacenames [ONLINE]}]
[OVERFLOW LOG PATH default-log-path [:logpaths]]

and load_recovery_action_clause stands for:
LOAD RECOVERY { CONTINUE | DEVICE_TERMINATE | TERMINATE }

db2Rollforward - Rollforward Database

Chapter 4. Rollforward Recovery 153

username
Identifies the user name under which the database is to be rolled
forward.

password
The password used to authenticate the user name.

point-in-time
A time stamp in ISO format, yyyy-mm-dd-hh.mm.ss.nnnnnn (year,
month, day, hour, minutes, seconds, microseconds), expressed in
Coordinated Universal Time (UTC).

tablespacenames
A compound REXX host variable containing a list of table spaces to be
rolled forward. In the following, XXX is the name of the host variable:

XXX.0 Number of table spaces to be rolled forward

XXX.1 First table space name

XXX.2 Second table space name

XXX.x and so on.

default-log-path
The default overflow log path to be searched for archived logs during
recovery

logpaths
A compound REXX host variable containing a list of alternate log
paths to be searched for archived logs during recovery. In the
following, XXX is the name of the host variable:

XXX.0 Number of changed overflow log paths

XXX.1.1 First node

XXX.1.2 First overflow log path

XXX.2.1 Second node

XXX.2.2 Second overflow log path

XXX.3.1 Third node

XXX.3.2 Third overflow log path

XXX.x.1 and so on.

nodelist
A compound REXX host variable containing a list of database
partition servers. In the following, XXX is the name of the host
variable:

XXX.0 Number of nodes

db2Rollforward - Rollforward Database

154 Data Recovery and High Availability Guide and Reference

XXX.1 First node

XXX.2 Second node

XXX.x and so on.

Usage notes:

The database manager uses the information stored in the archived and the
active log files to reconstruct the transactions performed on the database since
its last backup.

The action performed when this API is called depends on the
rollforward_pending flag of the database prior to the call. This can be queried
using ″db2CfgGet - Get Configuration Parameters″ The rollforward_pending flag
is set to DATABASE if the database is in roll-forward pending state. It is set to
TABLESPACE if one or more table spaces are in SQLB_ROLLFORWARD_PENDING or
SQLB_ROLLFORWARD_IN_PROGRESS state. The rollforward_pending flag is set to NO if
neither the database nor any of the table spaces needs to be rolled forward.

If the database is in roll-forward pending state when this API is called, the
database will be rolled forward. Table spaces are returned to normal state
after a successful database roll-forward, unless an abnormal state causes one
or more table spaces to go offline. If the rollforward_pending flag is set to
TABLESPACE, only those table spaces that are in roll-forward pending state, or
those table spaces requested by name, will be rolled forward.

Note: If table space rollforward terminates abnormally, table spaces that were
being rolled forward will be put in SQLB_ROLLFORWARD_IN_PROGRESS
state. In the next invocation of ROLLFORWARD DATABASE, only
those table spaces in SQLB_ROLLFORWARD_IN_PROGRESS state will be
processed. If the set of selected table space names does not include all
table spaces that are in SQLB_ROLLFORWARD_IN_PROGRESS state, the table
spaces that are not required will be put into SQLB_RESTORE_PENDING
state.

If the database is not in roll-forward pending state and no point in time is
specified, any table spaces that are in rollforward-in-progress state will be
rolled forward to the end of logs. If no table spaces are in
rollforward-in-progress state, any table spaces that are in rollforward pending
state will be rolled forward to the end of logs.

This API reads the log files, beginning with the log file that is matched with
the backup image. The name of this log file can be determined by calling this
API with a caller action of SQLUM_QUERY before rolling forward any log files.

db2Rollforward - Rollforward Database

Chapter 4. Rollforward Recovery 155

The transactions contained in the log files are reapplied to the database. The
log is processed as far forward in time as information is available, or until the
time specified by the stop time parameter.

Recovery stops when any one of the following events occurs:
v No more log files are found
v A time stamp in the log file exceeds the completion time stamp specified by

the stop time parameter
v An error occurs while reading the log file.

Some transactions might not be recovered. The value returned in
pLastCommitTime indicates the time stamp of the last committed transaction
that was applied to the database.

If the need for database recovery was caused by application or human error,
the user may want to provide a time stamp value in pStopTime, indicating that
recovery should be stopped before the time of the error. This applies only to
full database roll-forward recovery, and to table space rollforward to a point
in time. It also permits recovery to be stopped before a log read error occurs,
determined during an earlier failed attempt to recover.

When the rollforward_recovery flag is set to DATABASE, the database is not
available for use until roll-forward recovery is terminated. Termination is
accomplished by calling the API with a caller action of SQLUM_STOP or
SQLUM_ROLLFORWARD_STOP to bring the database out of roll-forward pending
state. If the rollforward_recovery flag is TABLESPACE, the database is available for
use. However, the table spaces in SQLB_ROLLFORWARD_PENDING and
SQLB_ROLLFORWARD_IN_PROGRESS states will not be available until the API is
called to perform table space roll-forward recovery. If rolling forward table
spaces to a point in time, the table spaces are placed in backup pending state
after a successful rollforward.

When the RollforwardFlags option is set to SQLP_ROLLFORWARD_LOCAL_TIME, all
messages returned to the user will also be in local time. All times are
converted on the server, and on the catalog partition, if it is a partitioned
database environment. The timestamp string is converted to GMT on the
server, so the time is local to the server’s time zone, not the client’s. If the
client is in one time zone and the server in another, the server’s local time
should be used. This is different from the local time option from the Control
Center, which is local to the client. If the timestamp string is close to the time
change of the clock due to daylight savings, it is important to know if the
stop time is before or after the clock change, and specify it correctly.

Related reference:

v “SQLCA” in the Administrative API Reference

db2Rollforward - Rollforward Database

156 Data Recovery and High Availability Guide and Reference

Related samples:

v “dbrecov.sqc -- How to recover a database (C)”
v “dbrecov.sqC -- How to recover a database (C++)”

Rollforward Sessions - CLP Examples

Example 1

The ROLLFORWARD DATABASE command permits specification of multiple
operations at once, each being separated with the keyword AND. For example,
to roll forward to the end of logs, and complete, the separate commands:

db2 rollforward db sample to end of logs
db2 rollforward db sample complete

can be combined as follows:
db2 rollforward db sample to end of logs and complete

Although the two are equivalent, it is recommended that such operations be
done in two steps. It is important to verify that the rollforward operation has
progressed as expected, before stopping it and possibly missing logs. This is
especially important if a bad log is found during rollforward recovery, and the
bad log is interpreted to mean the “end of logs”. In such cases, an undamaged
backup copy of that log could be used to continue the rollforward operation
through more logs.

Example 2

Roll forward to the end of the logs (two table spaces have been restored):
db2 rollforward db sample to end of logs
db2 rollforward db sample to end of logs and stop

These two statements are equivalent. Neither AND STOP or AND
COMPLETE is needed for table space rollforward recovery to the end of the
logs. Table space names are not required. If not specified, all table spaces
requiring rollforward recovery will be included. If only a subset of these table
spaces is to be rolled forward, their names must be specified.

Example 3

After three table spaces have been restored, roll one forward to the end of the
logs, and the other two to a point in time, both to be done online:

db2 rollforward db sample to end of logs tablespace(TBS1) online

db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop
tablespace(TBS2, TBS3) online

db2Rollforward - Rollforward Database

Chapter 4. Rollforward Recovery 157

Note that two rollforward operations cannot be run concurrently. The second
command can only be invoked after the first rollforward operation completes
successfully.

Example 4

After restoring the database, roll forward to a point in time, using
OVERFLOW LOG PATH to specify the directory where the user exit saves
archived logs:

db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop
overflow log path (/logs)

Example 5 (MPP)

There are three nodes: 0, 1, and 2. Table space TBS1 is defined on all nodes,
and table space TBS2 is defined on nodes 0 and 2. After restoring the database
on node 1, and TBS1 on nodes 0 and 2, roll the database forward on node 1:

db2 rollforward db sample to end of logs and stop

This returns warning SQL1271 (“Database is recovered but one or more table
spaces are offline on node(s) 0 and 2.”).

db2 rollforward db sample to end of logs

This rolls TBS1 forward on nodes 0 and 2. The clause TABLESPACE(TBS1) is
optional in this case.

Example 6 (MPP)

After restoring table space TBS1 on nodes 0 and 2 only, roll TBS1 forward on
nodes 0 and 2:

db2 rollforward db sample to end of logs

Node 1 is ignored.
db2 rollforward db sample to end of logs tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on node 1.
Reports SQL4906N.

db2 rollforward db sample to end of logs on nodes (0, 2) tablespace(TBS1)

This completes successfully.
db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop

tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on node 1; all
pieces must be rolled forward together.

158 Data Recovery and High Availability Guide and Reference

Note: With table space rollforward to a point in time, the node clause is not
accepted. The rollforward operation must take place on all the nodes on
which the table space resides.

After restoring TBS1 on node 1:
db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop

tablespace(TBS1)

This completes successfully.

Example 7 (MPP)

After restoring a table space on all nodes, roll forward to PIT2, but do not
specify AND STOP. The rollforward operation is still in progress. Cancel and roll
forward to PIT1:

db2 rollforward db sample to pit2 tablespace(TBS1)
db2 rollforward db sample cancel tablespace(TBS1)

** restore TBS1 on all nodes **

db2 rollforward db sample to pit1 tablespace(TBS1)
db2 rollforward db sample stop tablespace(TBS1)

Example 8 (MPP)

Rollforward recover a table space that resides on eight nodes (3 to 10) listed in
the db2nodes.cfg file:

db2 rollforward database dwtest to end of logs tablespace (tssprodt)

This operation to the end of logs (not point in time) completes successfully.
The nodes on which the table space resides do not have to be specified. The
utility defaults to the db2nodes.cfg file.

Example 9 (MPP)

Rollforward recover six small table spaces that reside on a single node
database partition group (on node 6):

db2 rollforward database dwtest to end of logs on node (6)
tablespace(tsstore, tssbuyer, tsstime, tsswhse, tsslscat, tssvendor)

This operation to the end of logs (not point in time) completes successfully.

Chapter 4. Rollforward Recovery 159

160 Data Recovery and High Availability Guide and Reference

Part 2. High Availability

© Copyright IBM Corp. 2001, 2002 161

162 Data Recovery and High Availability Guide and Reference

Chapter 5. Introducing High Availability and Failover
Support

Successful e-businesses depend on the uninterrupted availability of
transaction processing systems, which in turn are driven by database
management systems, such as DB2, that must be available 24 hours a day and
7 days a week (“24 x 7”). This section discusses the following:
v “High Availability”
v “High Availability through Online Split Mirror and Suspended I/O

Support” on page 167
v “Fault Monitor Facility for UNIX Based Systems” on page 171
v “db2fm - DB2 Fault Monitor” on page 173

High Availability

High availability (HA) is the term that is used to describe systems that run and
are available to customers more or less all the time. For this to occur:
v Transactions must be processed efficiently, without appreciable performance

degradations (or even loss of availability) during peak operating periods. In
a partitioned database environment, DB2® can take advantage of both
intrapartition and interpartition parallelism to process transactions
efficiently. Intrapartition parallelism can be used in an SMP environment to
process the various components of a complex SQL statement
simultaneously. Interpartition parallelism in a partitioned database
environment, on the other hand, refers to the simultaneous processing of a
query on all participating nodes; each node processes a subset of the rows
in the table.

v Systems must be able to recover quickly when hardware or software
failures occur, or when disaster strikes. DB2 has an advanced continuous
checkpointing system and a parallel recovery capability that allow for
extremely fast crash recovery.
The ability to recover quickly can also depend on having a proven backup
and recovery strategy in place.

v Software that powers the enterprise databases must be continuously
running and available for transaction processing. To keep the database
manager running, you must ensure that another database manager can take
over if it fails. This is called failover. Failover capability allows for the
automatic transfer of workload from one system to another when there is
hardware failure.

© Copyright IBM Corp. 2001, 2002 163

Failover protection can be achieved by keeping a copy of your database on
another machine that is perpetually rolling the log files forward. Log shipping
is the process of copying whole log files to a standby machine, either from an
archive device, or through a user exit program running against the primary
database. With this approach, the primary database is restored to the standby
machine, using either the DB2 restore utility or the split mirror function. You
can use the new suspended I/O support to quickly initialize the new
database. The secondary database on the standby machine continuously rolls
the log files forward. If the primary database fails, any remaining log files are
copied over to the standby machine. After a rollforward to the end of the logs
and stop operation, all clients are reconnected to the secondary database on
the standby machine.

Failover support can also be provided through platform-specific software that
you can add to your system. For example:
v High Availability Cluster Multi-Processing, Enhanced Scalability, for AIX.

For detailed information about HACMP/ES, see the white paper entitled
“IBM® DB2 Universal Database™ Enterprise Edition for AIX® and
HACMP/ES”, which is available from the “DB2 UDB and DB2 Connect
Online Support” web site
(http://www.ibm.com/software/data/pubs/papers/).

v Microsoft® Cluster Server, for Windows® operating systems.
For information about Microsoft Cluster Server see the following white
papers which are available from the “DB2 UDB and DB2 Connect™ Online
Support” web site (http://www.ibm.com/software/data/pubs/papers/):
“Implementing IBM DB2 Universal Database Enterprise - Extended Edition
with Microsoft Cluster Server”, “Implementing IBM DB2 Universal
Database Enterprise Edition with Microsoft Cluster Server”, and “DB2
Universal Database for Windows: High Availability Support Using
Microsoft Cluster Server - Overview”.

v Sun Cluster, or VERITAS Cluster Server, for the Solaris Operating
Environment.
For information about Sun Cluster 3.0, see the white paper entitled “DB2
and High Availability on Sun Cluster 3.0”, which is available from the “DB2
UDB and DB2 Connect Online Support” web site
(http://www.ibm.com/software/data/pubs/papers/). For information
about VERITAS Cluster Server, see the white paper entitled “DB2 and High
Availability on VERITAS Cluster Server”, which is also available from the
“DB2 UDB and DB2 Connect Online Support” Web site.

v Multi-Computer/ServiceGuard, for Hewlett-Packard.
For detailed information about HP MC/ServiceGuard, see the white paper
which discusses IBM DB2 implementation and certification with
Hewlett-Packard’s MC/ServiceGuard high availability software, which is

164 Data Recovery and High Availability Guide and Reference

http://www.ibm.com/software/data/pubs/papers/
http://www.ibm.com/software/data/pubs/papers/
http://www.ibm.com/software/data/pubs/papers/

available from the “IBM Data Management Products for HP” web site
(http://www.ibm.com/software/data/hp/pdfs/db2mc.pdf).

Failover strategies are usually based on clusters of systems. A cluster is a
group of connected systems that work together as a single system. Each
processor is known as a node within the cluster. Clustering allows servers to
back each other up when failures occur, by picking up the workload of the
failed server.

IP address takeover (or IP takeover) is the ability to transfer a server IP
address from one machine to another when a server goes down; to a client
application, the two machines appear at different times to be the same server.

Failover software may use heartbeat monitoring or keepalive packets between
systems to confirm availability. Heartbeat monitoring involves system services
that maintain constant communication between all the nodes in a cluster. If a
heartbeat is not detected, failover to a backup system starts. End users are
usually not aware that a system has failed.

The two most common failover strategies on the market are known as idle
standby and mutual takeover, although the configurations associated with these
terms may also be associated with different terms that depend on the vendor:

Idle Standby
In this configuration, one system is used to run a DB2 instance, and
the second system is “idle”, or in standby mode, ready to take over
the instance if there is an operating system or hardware failure
involving the first system. Overall system performance is not
impacted, because the standby system is idle until needed.

Mutual Takeover
In this configuration, each system is the designated backup for
another system. Overall system performance may be impacted,
because the backup system must do extra work following a failover: it
must do its own work plus the work that was being done by the
failed system.

Failover strategies can be used to failover an instance, a partition, or multiple
logical nodes.

Related concepts:

v “Parallelism” in the Administration Guide: Planning

v “Developing a Backup and Recovery Strategy” on page 3
v “High Availability through Online Split Mirror and Suspended I/O

Support” on page 167
v “High Availability in the Solaris Operating Environment” on page 189

Chapter 5. Introducing High Availability and Failover Support 165

http://www.ibm.com/software/data/hp/pdfs/db2mc.pdf

v “High Availability on Sun Cluster 3.0” on page 192
v “High Availability with VERITAS Cluster Server” on page 195
v Chapter 7, “High Availability on the Windows Operating System” on page

183
v Chapter 6, “High Availability on AIX” on page 177

High Availability through Log Shipping

Log shipping is the process of copying whole log files to a standby machine
either from an archive device, or through a user exit program running against
the primary database. The standby database is continuously rolling forward
through the log files produced by the production machine. When the
production machine fails, a failover occurs and the following takes place:
v The remaining logs are transferred over to the standby machine.
v The standby database rolls forward to the end of the logs and stops.
v The clients reconnect to the standby database and resume operations.

The standby machine has its own resources (i.e., disks), but must have the
same physical and logical definitions as the production database. When using
this approach the primary database is restored to the standby machine, by
using restore utility or the split mirror function.

To ensure that you are able to recover your database in a disaster recovery
situation consider the following:
v The archive location should be geographically separate from the primary

site.
v Remotely mirror the log at the standby database site
v Use a synchronous mirror for no loss support. You can do this through

DB2® log mirroring or modern disk subsystems such as ESS and EMC.
NVRAM cache (both local and remote) is also recommended to minimize
the performance impact of a disaster recovery situation.

Notes:

1. When the standby database processes a log record indicating that an index
rebuild took place on the primary database, the indexes on the standby
server are not automatically rebuilt. The index will be rebuilt on the
standby server either at the first connection to the database, or at the first
attempt to access the index after the standby server is taken out of
rollforward pending state. It is recommended that the standby server be
resynchronized with the primary server if any indexes on the primary
server are rebuilt.

2. If the load utility is run on the primary database with the COPY YES
option specified, the standby database must have access to the copy
image.

166 Data Recovery and High Availability Guide and Reference

3. If the load utility is run on the primary database with the COPY NO
option specified, the standby database should be resynchronized,
otherwise the table space will be placed in restore pending state.

4. There are two ways to initialize a standby machine:
a. By restoring to it from a backup image.
b. By creating a split mirror of the production system and issuing the

db2inidb command with the STANDBY option.

Only after the standby machine has been initialized can you issue the
ROLLFORWARD command on the standby system.

5. Operations that are not logged will not be replayed on the standby
database. As a result, it is recommended that you re-sync the standby
database after such operations. You can do this through online split mirror
and suspended I/O support.

Related concepts:

v “High Availability through Online Split Mirror and Suspended I/O
Support” on page 167

Related tasks:

v “Using a Split Mirror as a Standby Database” on page 169

Related reference:

v Appendix G, “User Exit for Database Recovery” on page 323

High Availability through Online Split Mirror and Suspended I/O Support

Suspended I/O supports continuous system availability by providing a full
implementation for online split mirror handling; that is, splitting a mirror
without shutting down the database. A split mirror is an “instantaneous” copy
of the database that can be made by mirroring the disks containing the data,
and splitting the mirror when a copy is required. Disk mirroring is the process
of writing all of your data to two separate hard disks; one is the mirror of the
other. Splitting a mirror is the process of separating the primary and
secondary copies of the database.

If you would rather not back up a large database using the DB2® backup
utility, you can make copies from a mirrored image by using suspended I/O
and the split mirror function. This approach also:
v Eliminates backup operation overhead from the production machine
v Represents a fast way to clone systems

Chapter 5. Introducing High Availability and Failover Support 167

v Represents a fast implementation of idle standby failover. There is no initial
restore operation, and if a rollforward operation proves to be too slow, or
encounters errors, reinitialization is very fast.

The db2inidb command initializes the split mirror so that it can be used:
v As a clone database
v As a standby database
v As a backup image

This command can only be issued against a split mirror, and it must be run
before the split mirror can be used.

In a partitioned database environment, you do not have to suspend I/O
writes on all partitions simultaneously. You can suspend a subset of one or
more partitions to create split mirrors for performing offline backups. If the
catalog node is included in the subset, it must be the last partition to be
suspended.

In a partitioned database environment, the db2inidb command must be run
on every partition before the split image from any of the partitions can be
used. The tool can be run on all partitions simultaneously using the db2_all
command.

Note: Ensure that the split mirror contains all containers and directories
which comprise the database, including the volume directory.

Related reference:

v “db2inidb - Initialize a Mirrored Database” on page 220

Online Split Mirror Handling

Making a Clone Database

Restrictions:

You cannot back up a cloned database, restore the backup image on the
original system, and roll forward through log files produced on the original
system.

Procedure:

To clone a database, follow these steps:
1. Suspend I/O on the primary database:

db2 set write suspend for database

168 Data Recovery and High Availability Guide and Reference

2. Use appropriate operating system-level commands to split the mirror or
mirrors from the primary database.

3. Resume I/O on the primary database:
db2 set write resume for database

4. Attach to the mirrored database from another machine.
5. Start the database instance:

db2start

6. Initialize the mirrored database as a clone of the primary database:
db2inidb database_alias as snapshot

Note: This command will roll back transactions that are in flight when the
split occurs, and start a new log chain sequence so that any logs
from the primary database cannot be replayed on the cloned
database.

Related concepts:

v “High Availability through Online Split Mirror and Suspended I/O
Support” on page 167

Related reference:

v “db2inidb - Initialize a Mirrored Database” on page 220

Using a Split Mirror as a Standby Database

Procedure:

To use a split mirror as a standby database, follow these steps:
1. Suspend I/O on the primary database:

db2 set write suspend for database

2. Use appropriate operating system-level commands to split the mirror or
mirrors from the primary database.

3. Resume I/O on the primary database:
db2 set write resume for database

4. Attach the mirrored database to another instance.
5. Put the mirrored database in rollforward pending state:

db2inidb database_alias as standby

Note: If you have only DMS table spaces (database managed space), you
can take a full database backup to offload the overhead of taking a
backup on the production database.

6. Set up a user exit program to retrieve the log files from the primary
system.

Chapter 5. Introducing High Availability and Failover Support 169

7. Roll the database forward to the end of the logs or to a point-in-time.
8. Continue retrieving log files, and rolling the database forward through the

logs until you reach the end of the logs or the point-in-time required for
the standby database.

9. To bring the standby database online issue the ROLLFORWARD command
with the STOP option specified.

Related concepts:

v “High Availability through Online Split Mirror and Suspended I/O
Support” on page 167

Related tasks:

v “Making a Clone Database” on page 168
v “Using a Split Mirror as a Backup Image” on page 170

Related reference:

v “db2inidb - Initialize a Mirrored Database” on page 220

Using a Split Mirror as a Backup Image

Procedure:

To use a split mirror as a “backup image”, follow these steps:
1. Suspend I/O on the primary database:

db2 set write suspend for database

2. Use appropriate operating system-level commands to split the mirror or
mirrors from the primary database.

3. Resume I/O on the primary database:
db2 set write resume for database

4. A failure occurs on the primary system, necessitating a restore from
backup.

5. Stop the primary database instance:
db2stop

6. Use operating system-level commands to copy the split-off data over the
primary system. Do not copy the split-off log files, because the primary
logs will be needed for rollforward recovery.

7. Start the primary database instance:
db2start

8. Initialize the primary database:
db2inidb database_alias as mirror

9. Roll the primary database forward to the end of the logs or to a
point-in-time and stop.

170 Data Recovery and High Availability Guide and Reference

Related concepts:

v “High Availability through Online Split Mirror and Suspended I/O
Support” on page 167

Related tasks:

v “Making a Clone Database” on page 168
v “Using a Split Mirror as a Standby Database” on page 169

Related reference:

v “db2inidb - Initialize a Mirrored Database” on page 220

Fault Monitor Facility for UNIX Based Systems

On UNIX® based systems, the Fault Monitor Facility improves the availability
of non-clustered DB2® environments through a sequence of processes that
work together to ensure that DB2 is running. That is, the init daemen
monitors the Fault Monitor Coordinator (FMC), the FMC monitors the fault
monitors and the fault monitors monitor DB2.

The Fault Monitor Coordinator (FMC) is the process of the Fault Monitor
Facility that is started at the UNIX boot sequence. The init daemon starts the
FMC and will restart it if it terminates abnormally. The FMC starts one fault
monitor for each DB2 instance. Each fault monitor runs as a daemon process
and has the same user privileges as the DB2 instance. Once a fault monitor is
started, it will be monitored to make sure it does not exit prematurely. If a
fault monitor fails, it will be restarted by the FMC. Each fault monitor will, in
turn, be responsible for monitoring one DB2 instance. If the DB2 instance exits
prematurely, the fault monitor will restart it.

Notes:

1. If you are using a high availability clustering product (i.e., HACMP or
MSCS), the fault monitor facility must be turned off since the instance
startup and shut down is controlled by the clustering product.

2. The fault monitor will only become inactive if the db2stop command is
issued. If a DB2 instance is shut down in any other way, the fault monitor
will start it up again.

Fault Monitor Registry File

A fault monitor registry file is created for every instance on each physical
machine when the fault monitor daemon is started. The values in this file
specify the behavior of the fault monitors. The file can be found in the
/sqllib/ directory and is called fm.<machine_name>.reg. This file can be
altered using the db2fm command. The entries are as follows:

Chapter 5. Introducing High Availability and Failover Support 171

FM_ON = no
FM_ACTIVE = yes
START_TIMEOUT = 600
STOP_TIMEOUT = 600
STATUS_TIMEOUT = 20
STATUS_INTERVAL = 20
RESTART_RETRIES = 3
ACTION_RETRIES = 3
NOTIFY_ADDRESS = <instance_name>@<machine_name>

where:

FM_ON
Specifies whether or not the fault monitor should be started. If the
value is set to NO, the fault monitor daemon will not be started, or will
be turned off if it had already been started. The default value is NO.

FM_ACTIVE
Specifies whether or note the fault monitor is active. The fault monitor
will only take action if both FM_ON and FM_ACTIVE are set to YES.
If FM_ON is set to YES and FM_ACTIVE is set to NO, the fault monitor
daemon will be started, but it will not be active. That means that is
will not try to bring DB2 back online if it shuts down. The default
value is YES.

START_TIMEOUT
Specifies the amount of time within which the fault monitor must
start the service it is monitoring. The default value is 600 seconds.

STOP_TIMEOUT
Specifies the amount of time within which the fault monitor must
bring down the service it is monitoring. The default value is 600
seconds.

STATUS_TIMEOUT
Specifies the amount of time within which the fault monitor must get
the status of the service it is monitoring. The default value is 20
seconds.

STATUS_INTERVAL
Specifies the minimum time between two consecutive calls to obtain
the status of the service that is being monitored. The default value is
20 seconds.

RESTART_RETRIES
Specifies the number of times the fault monitor will try to obtain the
status of the service being monitored after a failed attempt. Once this
number is reached the fault monitor will take action to bring the
service back online. The default value is 3.

172 Data Recovery and High Availability Guide and Reference

ACTION_RETRIES
Specifies the number of times the fault monitor will attempt to bring
the service back online. The default value is 3.

NOTIFY_ADDRESS
Specifies the e-mail address to which the fault monitor will send
notification messages. The default is
<instance_name>@<machine_name>)

This file can be altered using the db2fm command. For example:

To update the START_TIMEOUT value to 100 seconds for instance DB2INST1,
issue:

db2fm -i db2inst1 -T 100

To update the STOP_TIMEOUT value to 200 seconds for instance DB2INST1,
issue:

db2fm -i db2inst1 -T /200

To update the START_TIMEOUT value to 100 seconds and the
STOP_TIMEOUT value to 200 seconds for instance DB2INST1, issue:

db2fm -i db2inst1 -T 100/200

To turn on fault monitoring for instance DB2INST1, issue:
db2fm -i db2inst1 -f yes

To turn off fault monitoring for instance DB2INST1, issue:
db2fm -i db2inst1 -f no

Note: If the fault monitor registry file does not exist, the default values will
be used.

Related reference:

v “db2fm - DB2 Fault Monitor” on page 173

db2fm - DB2 Fault Monitor

Controls the DB2 fault monitor daemon. You can use db2fm to configure the
fault monitor.

Authorization:

Authorization over the instance against which you are running the command.

Required Connection:

Chapter 5. Introducing High Availability and Failover Support 173

None.

Command Syntax:

II db2fm -t service
-i instance

-m module path
-u
-d
-s
-k
-U
-D
-S
-K
-f on

off
-a on

off
-T T1/T2
-l I1/I2
-R R1/R2
-n email
-h
-?

IM

Command Parameters:

-m module-path
Defines the full path of the fault monitor shared library for the
product being monitored. The default is
$INSTANCEHOME/sqllib/lib/libdb2gcf.

-t service
Gives the unique text descriptor for a service.

-i instance
Defines the instance of the service.

-u Brings the service up.

-U Brings the fault monitor daemon up.

-d Brings the service down.

-D Brings the fault monitor daemon down.

-k Kills the service.

-K Kills the fault monitor daemon.

-s Returns the status of the service.

-S Returns the status of the fault monitor daemon.

db2fm - DB2 Fault Monitor

174 Data Recovery and High Availability Guide and Reference

Note: the status of the service or fault monitor can be one of the
following
v Not properly installed,
v INSTALLED PROPERLY but NOT ALIVE,
v ALIVE but NOT AVAILABLE (maintenance),
v AVAILABLE, or
v UNKNOWN

-f on|off
Turns fault monitor on or off.

Note: If this option is set off, the fault monitor daemon will not be
started, or the daemon will exit if it was running.

-a on|off
Activates or deactivate fault monitoring.

Note: If this option if set off, the fault monitor will not be actively
monitoring, which means if the service goes down it will not
try to bring it back.

-T T1/T2
Overwrites the start and stop time-out.

e.g.
v -T 15/10 updates the two time-outs respectively
v -T 15 updates the start time-out to 15 secs
v -T /10 updates the stop time-out to 10 secs

-I I1/I2
Sets the status interval and time-out respectively.

-R R1/R2
Sets the number of retries for the status method and action before
giving up.

-n email
Sets the email address for notification of events.

-h Prints usage.

-? Prints usage.

Usage Notes:

1. This command may be used on UNIX platforms only.

db2fm - DB2 Fault Monitor

Chapter 5. Introducing High Availability and Failover Support 175

db2fm - DB2 Fault Monitor

176 Data Recovery and High Availability Guide and Reference

Chapter 6. High Availability on AIX

Enhanced Scalability (ES) is a feature of High Availability Cluster
Multi-Processing (HACMP) for AIX. This feature provides the same failover
recovery and has the same event structure as HACMP. Enhanced scalability
also provides:
v Larger HACMP clusters.
v Additional error coverage through user-defined events. Monitored areas can

trigger user-defined events, which can be as diverse as the death of a
process, or the fact that paging space is nearing capacity. Such events
include pre- and post-events that can be added to the failover recovery
process, if needed. Extra functions that are specific to the different
implementations can be placed within the HACMP pre- and post-event
streams.
A rules file (/usr/sbin/cluster/events/rules.hacmprd) contains the
HACMP events. User-defined events are added to this file. The script files
that are to be run when events occur are part of this definition.

v HACMP client utilities for monitoring and detecting status changes (in one
or more clusters) from AIX® physical nodes outside of the HACMP cluster.

The nodes in HACMP ES clusters exchange messages called heartbeats, or
keepalive packets, by which each node informs the other nodes about its
availability. A node that has stopped responding causes the remaining nodes
in the cluster to invoke recovery. The recovery process is called a node_down
event and may also be referred to as failover. The completion of the recovery
process is followed by the re-integration of the node into the cluster. This is
called a node_up event.

There are two types of events: standard events that are anticipated within the
operations of HACMP ES, and user-defined events that are associated with
the monitoring of parameters in hardware and software components.

One of the standard events is the node_down event. When planning what
should be done as part of the recovery process, HACMP allows two failover
options: hot (or idle) standby, and mutual takeover.

Note: When using HACMP, ensure that DB2® instances are not started at boot
time by using the db2iauto utility as follows:

db2iauto -off InstName

where

InstName is the login name of the instance.

© Copyright IBM Corp. 2001, 2002 177

Cluster Configuration

In a hot standby configuration, the AIX processor node that is the takeover
node is not running any other workload. In a mutual takeover configuration,
the AIX processor node that is the takeover node is running other workloads.

Generally, in a partioned database environment, DB2 Universal Database runs
in mutual takeover mode with partitions on each node. One exception is a
scenario in which the catalog node is part of a hot standby configuration.

When planning a large DB2 installation on an RS/6000® SP™ using HACMP
ES, you need to consider how to divide the nodes of the cluster within or
between the RS/6000 SP frames. Having a node and its backup in different SP
frames allows takeover in the event one frame goes down (that is, the frame
power/switch board fails). However, such failures are expected to be
exceedingly rare, because there are N+1 power supplies in each SP frame, and
each SP switch has redundant paths, along with N+1 fans and power. In the
case of a frame failure, manual intervention may be required to recover the
remaining frames. This recovery procedure is documented in the SP
Administration Guide. HACMP ES provides for recovery of SP node failures;
recovery of frame failures is dependent on the proper layout of clusters within
one or more SP frames.

Another planning consideration is how to manage big clusters. It is easier to
manage a small cluster than a big one; however, it is also easier to manage
one big cluster than many smaller ones. When planning, consider how your
applications will be used in your cluster environment. If there is a single,
large, homogeneous application running, for example, on 16 nodes, it is
probably easier to manage the configuration as a single cluster rather than as
eight two-node clusters. If the same 16 nodes contain many different
applications with different networks, disks, and node relationships, it is
probably better to group the nodes into smaller clusters. Keep in mind that
nodes integrate into an HACMP cluster one at a time; it will be faster to start
a configuration of multiple clusters rather than one large cluster. HACMP ES
supports both single and multiple clusters, as long as a node and its backup
are in the same cluster.

HACMP ES failover recovery allows pre-defined (also known as cascading)
assignment of a resource group to a physical node. The failover recovery
procedure also allows floating (or rotating) assignment of a resource group to
a physical node. IP addresses, and external disk volume groups, or file
systems, or NFS file systems, and application servers within each resource
group specify either an application or an application component, which can be
manipulated by HACMP ES between physical nodes by failover and

178 Data Recovery and High Availability Guide and Reference

reintegration. Failover and reintegration behavior is specified by the type of
resource group created, and by the number of nodes placed in the resource
group.

For example, consider a DB2 database partition (logical node). If its log and
table space containers were placed on external disks, and other nodes were
linked to those disks, it would be possible for those other nodes to access
these disks and to restart the database partition (on a takeover node). It is this
type of operation that is automated by HACMP. HACMP ES can also be used
to recover NFS file systems used by DB2 instance main user directories.

Read the HACMP ES documentation thoroughly as part of your planning for
recovery with DB2 UDB in a partitioned database environment. You should
read the Concepts, Planning, Installation, and Administration guides, then
build the recovery architecture for your environment. For each subsystem that
you have identified for recovery, based on known points of failure, identify
the HACMP clusters that you need, as well as the recovery nodes (either hot
standby or mutual takeover).

It is strongly recommended that both disks and adapters be mirrored in your
external disk configuration. For DB2 physical nodes that are configured for
HACMP, care is required to ensure that nodes on the volume group can vary
from the shared external disks. In a mutual takeover configuration, this
arrangement requires some additional planning, so that the paired nodes can
access each other’s volume groups without conflicts. In a partitioned database
environment, this means that all container names must be unique across all
databases.

One way to achieve uniqueness is to include the partition number as part of
the name. You can specify a node expression for container string syntax when
creating either SMS or DMS containers. When you specify the expression, the
node number can be part of the container name or, if you specify additional
arguments, the results of those arguments can be part of the container name.
Use the argument ″ $N″ ([blank]$N) to indicate the node expression. The
argument must occur at the end of the container string, and can only be used
in one of the following forms:

Chapter 6. High Availability on AIX 179

Table 1. Arguments for Creating Containers. The node number is assumed to be five.

Syntax Example Value

[blank]$N ″ $N″ 5

[blank]$N+[number] ″ $N+1011″ 1016

[blank]$N%[number] ″ $N%3″ 2

[blank]$N+[number]%[number] ″ $N+12%13″ 4

[blank]$N%[number]+[number] ″ $N%3+20″ 22

Notes:

1. % is modulus.

2. In all cases, the operators are evaluated from left to right.

Following are some examples of how to create containers using this special
argument:
v Creating containers for use on a two-node system.

CREATE TABLESPACE TS1 MANAGED BY DATABASE USING
(device ’/dev/rcont $N’ 20000)

The following containers would be used:
/dev/rcont0 - on Node 0
/dev/rcont1 - on Node 1

v Creating containers for use on a four-node system.
CREATE TABLESPACE TS2 MANAGED BY DATABASE USING

(file ’/DB2/containers/TS2/container $N+100’ 10000)

The following containers would be used:
/DB2/containers/TS2/container100 - on Node 0
/DB2/containers/TS2/container101 - on Node 1
/DB2/containers/TS2/container102 - on Node 2
/DB2/containers/TS2/container103 - on Node 3

v Creating containers for use on a two-node system.
CREATE TABLESPACE TS3 MANAGED BY SYSTEM USING

(’/TS3/cont $N%2, ’/TS3/cont $N%2+2’)

The following containers would be used:
/TS3/cont0 - on Node 0
/TS3/cont2 - on Node 0
/TS3/cont1 - on Node 1
/TS3/cont3 - on Node 1

Configuring DB2 Database Partitions for HACMP ES

180 Data Recovery and High Availability Guide and Reference

Once configured, each database partition in an instance is started by HACMP
ES, one physical node at a time. Multiple clusters are recommended for
starting parallel DB2 configurations that are larger than four nodes. Note that
in a 64-node parallel DB2 configuration, it is faster to start 32 two-node
HACMP clusters in parallel, than four 16-node clusters.

A script file, rc.db2pe, is packaged with DB2 UDB Enterprise Server Edition
(and installed on each node in /usr/bin) to assist in configuring for HACMP
ES failover or recovery in either hot standby or mutual takeover nodes. In
addition, DB2 buffer pool sizes can be customized during failover in mutual
takeover configurations from within rc.db2pe. (Buffer pool sizes can be
configured to ensure proper resource allocation when two database partitions
run on one physical node.)

HACMP ES Event Monitoring and User-defined Events

Initiating a failover operation if a process dies on a given node, is an example
of a user-defined event. Examples that illustrate user-defined events, such as
shutting down a database partition and forcing a transaction abort to free
paging space, can be found in the samples/hacmp/es subdirectory.

A rules file, /user/sbin/cluster/events/rules.hacmprd, contains HACMP
events. Each event description in this file has the following nine components:
v Event name, which must be unique.
v State, or qualifier for the event. The event name and state are the rule

triggers. HACMP ES Cluster Manager initiates recovery only if it finds a
rule with a trigger corresponding to the event name and state.

v Resource program path, a full-path specification of the xxx.rp file
containing the recovery program.

v Recovery type. This is reserved for future use.
v Recovery level. This is reserved for future use.
v Resource variable name, which is used for Event Manager events.
v Instance vector, which is used for Event Manager events. This is a set of

elements of the form ″name=value″. The values uniquely identify the copy
of the resource in the system and, by extension, the copy of the resource
variable.

v Predicate, which is used for Event Manager events. This is a relational
expression between a resource variable and other elements. When this
expression is true, the Event Management subsystem generates an event to
notify the Cluster Manager and the appropriate application.

v Rearm predicate, which is used for Event Manager events. This is a
predicate used to generate an event that alters the status of the primary

Chapter 6. High Availability on AIX 181

predicate. This predicate is typically the inverse of the primary predicate. It
can also be used with the event predicate to establish an upper and a lower
boundary for a condition of interest.

Each object requires one line in the event definition, even if the line is not
used. If these lines are removed, HACMP ES Cluster Manager cannot parse
the event definition properly, and this may cause the system to hang. Any line
beginning with ″#″ is treated as a comment line.

Note: The rules file requires exactly nine lines for each event definition, not
counting any comment lines. When adding a user-defined event at the
bottom of the rules file, it is important to remove the unnecessary
empty line at the end of the file, or the node will hang.

HACMP ES uses PSSP event detection to treat user-defined events. The PSSP
Event Management subsystem provides comprehensive event detection by
monitoring various hardware and software resources.

The process can be summarized as follows:
1. Either Group Services/ES (for predefined events) or Event Management

(for user-defined events) notifies HACMP ES Cluster Manager of the
event.

2. Cluster Manager reads the rules.hacmprd file, and determines the recovery
program that is mapped to the event.

3. Cluster Manager runs the recovery program, which consists of a sequence
of recovery commands.

4. The recovery program executes the recovery commands, which may be
shell scripts or binary commands. (In HACMP for AIX, the recovery
commands are the same as the HACMP event scripts.)

5. Cluster Manager receives the return status from the recovery commands.
An unexpected status ″hangs″ the cluster until manual intervention (using
smit cm_rec_aids or the /usr/sbin/cluster/utilities/clruncmd
command) is carried out.

For detailed information on the implementation and design of highly available
IBM® DB2 Universal Database™ environments on AIX see the following white
papers which are available from the ″DB2 UDB and DB2 Connect™ Support″
web site (http://www.ibm.com/software/data/pubs/papers/).:
v ″IBM DB2 Universal Database Enterprise Edition for AIX and HACMP/ES″

v ″IBM DB2 Universal Database Enterprise - Extended Edition for AIX and
HACMP/ES″

Related reference:

v “db2start - Start DB2” in the Command Reference

182 Data Recovery and High Availability Guide and Reference

http://www.ibm.com/software/data/pubs/papers/

Chapter 7. High Availability on the Windows Operating
System

Introduction

MSCS is a feature of Windows® NT Server, Windows 2000 Server, and
Windows .NET Server operating systems. It is the software that supports the
connection of two servers (up to four servers in DataCenter Server) into a
cluster for high availability and easier management of data and applications.
MSCS can also automatically detect and recover from server or application
failures. It can be used to move server workloads to balance machine
utilization and to provide for planned maintenance without downtime.

The following DB2® products have support for MSCS:
v DB2 Universal Database™ Workgroup Server Edition
v DB2 Universal Database Enterprise Server Edition (DB2 ESE)
v DB2 Universal Database Connect Enterprise Edition (DB2 CEE)

DB2 MSCS Components

A cluster is a configuration of two or more nodes, each of which is an
independent computer system. The cluster appears to network clients as a
single server.

© Copyright IBM Corp. 2001, 2002 183

The nodes in an MSCS cluster are connected using one or more shared storage
buses and one or more physically independent networks. The network that
connects only the servers but does not connect the clients to the cluster is
referred to as a private network. The network that supports client connections
is referred to as the public network. There are one or more local disks on each
node. Each shared storage bus attaches to one or more disks. Each disk on the
shared bus is owned by only one node of the cluster at a time. The DB2
software resides on the local disk. DB2 database files (tables, indexes, log files,
etc.) reside on the shared disks. Because MSCS does not support the use of
raw partitions in a cluster, it is not possible to configure DB2 to use raw
devices in an MSCS environment.

The DB2 Resource

In an MSCS environment, a resource is an entity that is managed by the
clustering software. For example, a disk, an IP address, or a generic service
can be managed as a resource. DB2 integrates with MSCS by creating its own
resource type called ôDB2.ö Each DB2 resource manages a DB2 instance, and
when running in a partitioned database environment, each DB2 resource
manages a database partition. The name of the DB2 resource is the instance
name, although in the case of a partitioned database environment, the name
of the DB2 resource consists of both the instance name and the partition (or
node) number.

Pre-online and Post-online Script

Machine A Machine B

C: C:

E:

F:

SQLLIB SQLLIB

(Each machine has DB2 code
installed on a local disk)

Quorum disk
used by MSCS

DB2 Group 0

DB2 Group 1

Cluster disks in a disk tower

D:

Figure 16. Example MSCS Configuration

184 Data Recovery and High Availability Guide and Reference

You can run scripts both before and after a DB2 resource is brought online.
These scripts are referred to as pre-online and post-online scripts respectively.
Pre-online and post-online scripts are .BAT files that can run DB2 and system
commands.

In a situation when multiple instances of DB2 may be running on the same
machine, you can use the pre-online and post-online scripts to adjust the
configuration so that both instances can be started successfully. In the event of
a failover, you can use the post-online script to perform manual database
recovery. Post-online script can also be used to start any applications or
services that depend on DB2.

The DB2 Group

Related or dependent resources are organized into resource groups. All
resources in a group move between cluster nodes as a unit. For example, in a
typical DB2 single partition cluster environment, there will be a DB2 group
that contains the following resources:
1. DB2 resource. The DB2 resource manages the DB2 instance (or node).
2. IP Address resource. The IP Address resource allows client applications to

connect to the DB2 server.
3. Network Name resource. The Network Name resource allows client

applications to connect to the DB2 server by using a name rather than
using an IP address. The Network Name resource has a dependency on
the IP Address resource. The Network Name resource is optional.
(Configuring a Network Name resource may affect the failover
performance.)

4. One or more Physical Disk resources. Each Physical Disk resource
manages a shared disk in the cluster.

Note: The DB2 resource is configured to depend on all other resources in the
same group so the DB2 server can only be started after all other
resources are online.

Failover Configurations

Two types of configuration are available:
v Hot standby
v Mutual takeover

In a partitioned database environment, the clusters do not all have to have the
same type of configuration. You can have some clusters that are set up to use
hot standby, and others that are set up for mutual takeover. For example, if
your DB2 instance consists of five workstations, you can have two machines

Chapter 7. High Availability on the Windows Operating System 185

set up to use a mutual takeover configuration, two to use a hot standby
configuration, and one machine not configured for failover support.

Hot Standby Configuration

In a hot standby configuration, one machine in the MSCS cluster provides
dedicated failover support, and the other machine participates in the database
system. If the machine participating in the database system fails, the database
server on it will be started on the failover machine. If, in a partitioned
database system, you are running multiple logical nodes on a machine and it
fails, the logical nodes will be started on the failover machine. Figure 17
shows an example of a hot standby configuration.

Mutual Takeover Configuration

In a mutual takeover configuration, both workstations participate in the
database system (that is, each machine has at least one database server
running on it). If one of the workstations in the MSCS cluster fails, the
database server on the failing machine will be started to run on the other
machine. In a mutual takeover configuration, a database server on one
machine can fail independently of the database server on another machine.
Any database server can be active on any machine at any given point in time.
Figure 18 on page 187 shows an example of a mutual takeover configuration.

Workstation BWorkstation A

Cluster

Instance A Instance A

Figure 17. Hot Standby Configuration

186 Data Recovery and High Availability Guide and Reference

For detailed information on the implementation and design of highly available
IBM® DB2 Universal Database environments on the Windows Operating
System see the following white papers which are available from the ″DB2
UDB and DB2 Connect™ Support″ web site
(http://www.ibm.com/software/data/pubs/papers/).:
v ″Implementing IBM DB2 Universal Database Enterprise - Extended Edition

with Microsoft® Cluster Server″

v ″Implementing IBM DB2 Universal Database Enterprise Edition with
Microsoft Cluster Server″

v ″DB2 Universal Database for Windows: High Availability Support Using
Microsoft Cluster Server - Overview″

Workstation BWorkstation A

Cluster

Instance A

Instance B

Instance A

Instance B

Figure 18. Mutual Takeover Configuration

Chapter 7. High Availability on the Windows Operating System 187

http://www.ibm.com/software/data/pubs/papers/

188 Data Recovery and High Availability Guide and Reference

Chapter 8. High Availability in the Solaris Operating
Environment

High Availability in the Solaris Operating Environment

High availability in the Solaris Operating Environment can be achieved
through DB2® working with Sun Cluster 3.0 (SC3.0), or Veritas Cluster Server
(VCS). For information about Sun Cluster 3.0, see the white paper entitled
“DB2 and High Availability on Sun Cluster 3.0”, which is available from the
“DB2 UDB and DB2 Connect Online Support” web site
(http://www.ibm.com/software/data/pubs/papers/). For information about
VERITAS Cluster Server, see the white paper entitled “DB2 and High
Availability on VERITAS Cluster Server”, which is also available from the
“DB2 UDB and DB2 Connect™ Online Support” web site.

Note: When using Sun Cluster 3.0 or Veritas Cluster Server, ensure that DB2
instances are not started at boot time by using the db2iauto utility as
follows:

db2iauto -off InstName

where

InstName is the login name of the instance.

High Availability

The computer systems that host data services contain many distinct
components, and each component has a ″mean time before failure″ (MTBF)
associated with it. The MTBF is the average time that a component will
remain usable. The MTBF for a quality hard drive is in the order of one
million hours (approximately 114 years). While this seems like a long time,
one out of 200 disks is likely to fail within a 6-month period.

Although there are a number of methods to increase availability for a data
service, the most common is an HA cluster. A cluster, when used for high
availability, consists of two or more machines, a set of private network
interfaces, one or more public network interfaces, and some shared disks. This
special configuration allows a data service to be moved from one machine to
another. By moving the data service to another machine in the cluster, it
should be able to continue providing access to its data. Moving a data service
from one machine to another is called a failover, as illustrated in Figure 19 on
page 190.

© Copyright IBM Corp. 2001, 2002 189

The private network interfaces are used to send heartbeat messages, as well as
control messages, among the machines in the cluster. The public network
interfaces are used to communicate directly with clients of the HA cluster. The
disks in an HA cluster are connected to two or more machines in the cluster,
so that if one machine fails, another machine has access to them.

A data service running on an HA cluster has one or more logical public
network interfaces and a set of disks associated with it. The clients of an HA
data service connect via TCP/IP to the logical network interfaces of the data
service only. If a failover occurs, the data service, along with its logical
network interfaces and set of disks, are moved to another machine.

One of the benefits of an HA cluster is that a data service can recover without
the aid of support staff, and it can do so at any time. Another benefit is
redundancy. All of the parts in the cluster should be redundant, including the
machines themselves. The cluster should be able to survive any single point of
failure.

Even though highly available data services can be very different in nature,
they have some common requirements. Clients of a highly available data
service expect the network address and host name of the data service to
remain the same, and expect to be able to make requests in the same way,
regardless of which machine the data service is on.

Data 3Data 0 Switch

Data 1

Data 2

Machine A

Machine C

Machine B

Machine D

Figure 19. Failover. When Machine B fails its data service is moved to another machine in the
cluster so that the data can still be accessed.

190 Data Recovery and High Availability Guide and Reference

Consider a web browser that is accessing a highly available web server. The
request is issued with a URL (Uniform Resource Locator), which contains both
a host name, and the path to a file on the web server. The browser expects
both the host name and the path to remain the same after a failover ofáthe
web server. If the browser is downloading a file from the web server, and the
server is failed over, the browser will need to reissue the request.

Availability of a data service is measured by the amount of time the data
service is available to its users. The most common unit of measurement for
availability is the percentage of ″up time″; this is often referred to as the
number of ″nines″:

99.99% => service is down for (at most) 52.6 minutes / yr
99.999% => service is down for (at most) 5.26 minutes / yr
99.9999% => service is down for (at most) 31.5 seconds / yr

When designing and testing an HA cluster:
1. Ensure that the administrator of the cluster is familiar with the system and

what should happen when a failover occurs.
2. Ensure that each part of the cluster is truly redundant and can be replaced

quickly if it fails.
3. Force a test system to fail in a controlled environment, and make sure that

it fails over correctly each time.
4. Keep track of the reasons for each failover. Although this should not

happen often, it is important to address any issues that make the cluster
unstable. For example, if one piece of the cluster caused a failover five
times in one month, find out why and fix it.

5. Ensure that the support staff for the cluster is notified when a failover
occurs.

6. Do not overload the cluster. Ensure that the remaining systems can still
handle the workload at an acceptable level after a failover.

7. Check failure-prone components (such as disks) often, so that they can be
replaced before problems occur.

Fault Tolerance

Another way to increase the availability of a data service is fault tolerance. A
fault tolerant machine has all of its redundancy built in, and should be able to
withstand a single failure of any part, including CPU and memory. Fault
tolerant machines are most often used in niche markets, and are usually
expensive to implement. An HA cluster with machines in different
geographical locations has the added advantage of being able to recover from
a disaster affecting only a subset of those locations.

Chapter 8. High Availability in the Solaris Operating Environment 191

An HA cluster is the most common solution to increase availability because it
is scalable, easy to use, and relatively inexpensive to implement.

Related concepts:

v “High Availability on Sun Cluster 3.0” on page 192
v “High Availability with VERITAS Cluster Server” on page 195

High Availability on Sun Cluster 3.0

This section provides an overview of how DB2® works with Sun Cluster 3.0 to
achieve high availability, and includes a description of the high availability
agent, which acts as a mediator between the two software products (see
Figure 20).

Failover

Sun Cluster 3.0 provides high availability by enabling application failover.
Each node is periodically monitored and the cluster software automatically
relocates a cluster-aware application from a failed primary node to a
designated secondary node. When a failover occurs, clients may experience a
brief interruption in service and may have to reconnect to the server.
However, they will not be aware of the physical server from which they are
accessing the application and the data. By allowing other nodes in a cluster to
automatically host workloads when the primary node fails, Sun Cluster 3.0
can significantly reduce downtime and increase productivity.

Multihost Disks

Sun Cluster 3.0 requires multihost disk storage. This means that disks can be
connected to more than one node at a time. In the Sun Cluster 3.0
environment, multihost storage allows disk devices to become highly
available. Disk devices that reside on multihost storage can tolerate single

DB2 HA Agent SC3.0

Figure 20. DB2, Sun Cluster 3.0, and High Availability. The relationship between DB2, Sun Cluster
3.0 and the high availability agent.

192 Data Recovery and High Availability Guide and Reference

node failures since there is still a physical path to the data through the
alternate server node. Multihost disks can be accessed globally through a
primary node. If client requests are accessing the data through one node and
that node fails, the requests are switched over to another node that has a
direct connection to the same disks. A volume manager provides for mirrored
or RAID 5 configurations for data redundancy of the multihost disks.
Currently, Sun Cluster 3.0 supports Solstice DiskSuite and VERITAS Volume
Manager as volume managers. Combining multihost disks with disk
mirroring and striping protects against both node failure and individual disk
failure.

Global Devices

Global devices are used to provide cluster-wide, highly available access to any
device in a cluster, from any node, regardless of the deviceÆs physical
location. All disks are included in the global namespace with an assigned
device ID (DID) and are configured as global devices. Therefore, the disks
themselves are visible from all cluster nodes.

File systems/Global File Systems

A cluster or global file system is a proxy between the kernel (on one node)
and the underlying file system volume manager (on a node that has a
physical connection to one or more disks). Cluster file systems are dependent
on global devices with physical connections to one or more nodes. They are
independent of the underlying file system and volume manager. Currently,
cluster file systems can be built on UFS using either Solstice DiskSuite or
VERITAS Volume Manager. The data only becomes available to all nodes if
the file systems on the disks are mounted globally as a cluster file system.

Device Group

All multihost disks must be controlled by the Sun Cluster framework. Disk
groups, managed by either Solstice DiskSuite or VERITAS Volume Manager,
are first created on the multihost disk. Then, they are registered as Sun
Cluster disk device groups. A disk device group is a type of global device.
Multihost device groups are highly available. Disks are accessible through an
alternate path if the node currently mastering the device group fails. The
failure of the node mastering the device group does not affect access to the
device group except for the time required to perform the recovery and
consistency checks. During this time, all requests are blocked (transparently to
the application) until the system makes the device group available.

Resource Group Manager (RGM)

Chapter 8. High Availability in the Solaris Operating Environment 193

The RGM, provides the mechanism for high availability and runs as a daemon
on each cluster node. It automatically starts and stops resources on selected
nodes according to pre-configured policies. The RGM allows a resource to be
highly available in the event of a node failure or to reboot by stopping the
resource on the affected node and starting it on another. The RGM also
automatically starts and stops resource-specific monitors that can detect
resource failures and relocate failing resources onto another node.

Data Services

The term data service is used to describe a third-party application that has
been configured to run on a cluster rather than on a single server. A data
service includes the application software and Sun Cluster 3.0 software that
starts, stops and monitors the application. Sun Cluster 3.0 supplies data
service methods that are used to control and monitor the application within
the cluster. These methods run under the control of the Resource Group
Manager (RGM), which uses them to start, stop, and monitor the application
on the cluster nodes. These methods, along with the cluster framework
software and multihost disks, enable applications to become highly available
data services. As highly available data services, they can prevent significant
application interruptions after any single failure within the cluster, regardless
of whether the failure is on a node, on an interface component or in the
application itself. The RGM also manages resources in the cluster, including
network resources (logical host names and shared addresses)and application
instances.

Resource Type, Resource and Resource Group

A resource type is made up of the following:
1. A software application to be run on the cluster.
2. Control programs used as callback methods by the RGM to manage the

application as a cluster resource.
3. A set of properties that form part of the static configuration of a cluster.

The RGM uses resource type properties to manage resources of a particular
type.

A resource inherits the properties and values of its resource type. It is an
instance of the underlying application running on the cluster. Each instance
requires a unique name within the cluster. Each resource must be configured
in a resource group. The RGM brings all resources in a group online and
offline together on the same node. When the RGM brings a resource group
online or offline, it invokes callback methods on the individual resources in
the group.

194 Data Recovery and High Availability Guide and Reference

The nodes on which a resource group is currently online are called its primary
nodes, or its primaries.A resource group is mastered by each of its primaries.
Each resource group has an associated Nodelist property, set by the cluster
administrator, to identify all potential primaries or masters of the resource
group.

For detailed information on the implementation and design of highly available
IBM® DB2 Universal Database environments on the Sun Cluster 3.0 platform
see the white paper entitled ″DB2 and High Availability on Sun Cluster 3.0″
which is available from the ″DB2 UDB and DB2 Connect™ Support″ web site
(http://www.ibm.com/software/data/pubs/papers/).

Related concepts:

v “High Availability in the Solaris Operating Environment” on page 189
v “High Availability with VERITAS Cluster Server” on page 195

High Availability with VERITAS Cluster Server

VERITAS Cluster Server can be used to eliminate both planned and
unplanned downtime. It can facilitate server consolidation and effectively
manage a wide range of applications in heterogeneous environments.
VERITAS Cluster Server supports up to 32 node clusters in both storage area
network (SAN) and traditional client/server environments, VERITAS Cluster
Server can protect everything from a single critical database instance, to very
large multi-application clusters in networked storage environments. This
section provides a brief summary of the features of VERITAS Cluster Server.

Hardware Requirements

Following is a list of hardware currently supported by VERITAS Cluster
Server:
v For server nodes:

– Any SPARC/Solaris server from Sun Microsystems running Solaris 2.6 or
later with a minimum of 128MB RAM.

v For disk storage:
– EMC Symmetrix, IBM® Enterprise Storage Server, HDS 7700 and 9xxx,

Sun T3, Sun A5000, Sun A1000, Sun D1000 and any other disk storage
supported by VCS 2.0 or later; your VERITAS representative can confirm
which disk subsystems are supported or you can refer to VCS
documentation.

– Typical environments will require mirrored private disks (in each cluster
node) for the DB2® UDB binaries and shared disks between nodes for
the DB2 UDB data.

Chapter 8. High Availability in the Solaris Operating Environment 195

http://www.ibm.com/software/data/pubs/papers/

v For network interconnects:
– For the public network connections, any network connection supporting

IP-based addressing.
– For the heartbeat connections (internal to the cluster), redundant

heartbeat connections are required; this requirement can be met through
the use of two additional Ethernet controllers per server or one
additional Ethernet controller per server and the use of one shared
GABdisk per cluster

Software Requirements

The following VERITAS software components are qualified configurations:
v VERITAS Volume Manager 3.2 or later, VERITAS File System 3.4 or later,

VERITAS Cluster Server 2.0 or later.
v DB Edition for DB2 for Solaris 1.0 or later.

While VERITAS Cluster Server does not require a volume manager, the use of
VERITAS Volume Manager is strongly recommended for ease of installation,
configuration and management.

Failover

VERITAS Cluster Server is an availability clustering solution that manages the
availability of application services, such as DB2 UDB, by enabling application
failover. The state of each individual cluster node and its associated software
services are regularly monitored. When a failure occurs that disrupts the
application service (in this case, the DB2 UDB service), VERITAS Cluster
Server and/or the VCS HA-DB2 Agent detect the failure and automatically
take steps to restore the service. This can include restarting DB2 UDB on the
same node or moving DB2 UDB to another node in the cluster and restarting
it on that node. If an application needs to be migrated to a new node,
VERITAS Cluster Server moves everything associated with the application
(i.e., network IP addresses, ownership of underlying storage) to the new node
so that users will not be aware that the service is actually running on another
node. They will still access the service using the same IP addresses, but those
addresses will now point to a different cluster node.

When a failover occurs with VERITAS Cluster Server, users may or may not
see a disruption in service. This will be based on the type of connection
(stateful or stateless) that the client has with the application service. In
application environments with stateful connections (like DB2 UDB), users may
see a brief interruption in service and may need to reconnect after the failover
has completed. In application environments with stateless connections (like
NFS), users may see a brief delay in service but generally will not see a
disruption and will not need to log back on.

196 Data Recovery and High Availability Guide and Reference

By supporting an application as a service that can be automatically migrated
between cluster nodes, VERITAS Cluster Server can not only reduce
unplanned downtime, but can also shorten the duration of outages associated
with planned downtime (i.e., for maintenance and upgrades). Failovers can
also be initiated manually. If a hardware or operating system upgrade must be
performed on a particular node, DB2 UDB can be migrated to another node in
the cluster, the upgrade can be performed, and then DB2 UDB can be
migrated back to the original node.

Applications recommended for use in these types of clustering environments
should be crash tolerant. A crash tolerant application can recover from an
unexpected crash while still maintaining the integrity of committed data.
Crash tolerant applications are sometimes referred to as cluster friendly
applications. DB2 UDB is a crash tolerant application.

Shared Storage

When used with the VCS HA-DB2 Agent, Veritas Cluster Server requires
shared storage. Shared storage is storage that has a physical connection to
multiple nodes in the cluster. Disk devices resident on shared storage can
tolerate node failures since a physical path to the disk devices still exists
through one or more alternate cluster nodes.

Through the control of VERITAS Cluster Server, cluster nodes can access
shared storage through a logical construct called ″disk groups″. Disk groups
represent a collection of logically defined storage devices whose ownership
can be atomically migrated between nodes in a cluster. A disk group can only
be imported to a single node at any given time. For example, if Disk Group A
is imported to Node 1 and Node 1 fails, Disk Group A can be exported from
the failed node and imported to a new node in the cluster. VERITAS Cluster
Server can simultaneously control multiple disk groups within a single cluster.

In addition to allowing disk group definition, a volume manager can provide
for redundant data configurations, using mirroring or RAID 5, on shared
storage. VERITAS Cluster Server supports VERITAS Volume Manager and
Solstice DiskSuite as logical volume managers. Combining shared storage with
disk mirroring and striping can protect against both node failure and
individual disk or controller failure.

VERITAS Cluster Server Global Atomic Broadcast(GAB) and Low Latency
Transport (LLT)

An internode communication mechanism is required in cluster configurations
so that nodes can exchange information concerning hardware and software
status, keep track of cluster membership, and keep this information
synchronized across all cluster nodes. The Global Atomic Broadcast (GAB)

Chapter 8. High Availability in the Solaris Operating Environment 197

facility, running across a low latency transport (LLT), provides the high speed,
low latency mechanism used by VERITAS Cluster Server to do this. GAB is
loaded as a kernel module on each cluster node and provides an atomic
broadcast mechanism that ensures that all nodes get status update information
at the same time.

By leveraging kernel-to-kernel communication capabilities, LLT provides high
speed, low latency transport for all information that needs to be exchanged
and synchronized between cluster nodes. GAB runs on top of LLT. VERITAS
Cluster Server does not use IP as a heartbeat mechanism, but offers two other
more reliable options. GAB with LLT, can be configured to act as a heartbeat
mechanism, or a GABdisk can be configured as a disk-based heartbeat. The
heartbeat must run over redundant connections. These connections can either
be two private Ethernet connections between cluster nodes, or one private
Ethernet connection and one GABdisk connection. The use of two GABdisks
is not a supported configuration since the exchange of cluster status between
nodes requires a private Ethernet connection.

For more information about GAB or LLT, or how to configure them in
VERITAS Cluster Server configurations, please consult the VERITAS Cluster
Server 2.0 User’s Guide for Solaris.

Bundled and Enterprise Agents

An agent is a program that is designed to manage the availability of a
particular resource or application. When an agent is started, it obtains the
necessary configuration information from VCS and then periodically monitors
the resource or application and updates VCS with the status. In general,
agents are used to bring resources online, take resources offline, or monitor
resources and provide four types of services: start, stop, monitor and clean.
Start and stop are used to bring resources online or offline, monitor is used to
test a particular resource or application for its status, and clean is used in the
recovery process.

A variety of bundled agents are included as part of VERITAS Cluster Server
and are installed when VERITAS Cluster Server is installed. The bundled
agents are VCS processes that manage predefined resource types commonly
found in cluster configurations (i.e., IP, mount, process and share), and they
help to simplify cluster installation and configuration considerably. There are
over 20 bundled agents with VERITAS Cluster Server.

Enterprise agents tend to focus on specific applications such as DB2 UDB. The
VCS HA-DB2 Agent can be considered an Enterprise Agent, and it interfaces
with VCS through the VCS Agent framework.

VCS Resources, Resource Types and Resource Groups

198 Data Recovery and High Availability Guide and Reference

A resource type is an object definition used to define resources within a VCS
cluster that will be monitored. A resource type includes the resource type
name and a set of properties associated with that resource that are salient
from a high availability point of view. A resource inherits the properties and
values of its resource type, and resource names must be unique on a
cluster-wide basis.

There are two types of resources: persistent and standard (non-persistent).
Persistent resources are resources such as network interface controllers (NICs)
that are monitored but are not brought online or taken offline by VCS.
Standard resources are those whose online and offline status is controlled by
VCS.

The lowest level object that is monitored is a resource, and there are various
resource types (i.e., share, mount). Each resource must be configured into a
resource group, and VCS will bring all resources in a particular resource
group online and offline together. To bring a resource group online or offline,
VCS will invoke the start or stop methods for each of the resources in the
group. There are two types of resource groups: failover and parallel. A highly
available DB2 UDB configuration, regardless of whether it is partitioned or
not, will use failover resource groups.

A ″primary″ or ″master″ node is a node that can potentially host a resource. A
resource group attribute called systemlist is used to specify which nodes
within a cluster can be primaries for a particular resource group. In a two
node cluster, usually both nodes are included in the systemlist, but in larger,
multi-node clusters that may be hosting several highly available applications
there may be a requirement to ensure that certain application services (defined
by their resources at the lowest level) can never fail over to certain nodes.

Dependencies can be defined between resource groups, and VERITAS Cluster
Server depends on this resource group dependency hierarchy in assessing the
impact of various resource failures and in managing recovery. For example, if
the resource group ClientApp1 can not be brought online unless the resource
group DB2 has already been successfully started, resource group ClientApp1
is considered dependent on resource group DB2.

For detailed information on the implementation and design of highly available
IBM DB2 Universal Database environments with the VERITAS Cluster Server
see the technote entitled ″DB2 UDB and High Availability with VERITAS
Cluster Server″ which you can view by going to the following web site:
http://www.ibm.com/support, and searching for the keyword ″1045033″.

Related concepts:

v “High Availability in the Solaris Operating Environment” on page 189

Chapter 8. High Availability in the Solaris Operating Environment 199

http://www.ibm.com/software/data/pubs/papers/

v “High Availability on Sun Cluster 3.0” on page 192

200 Data Recovery and High Availability Guide and Reference

Part 3. Appendixes

© Copyright IBM Corp. 2001, 2002 201

202 Data Recovery and High Availability Guide and Reference

Appendix A. How to Read the Syntax Diagrams

A syntax diagram shows how a command should be specified so that the
operating system can correctly interpret what is typed.

Read a syntax diagram from left to right, and from top to bottom, following
the horizontal line (the main path). If the line ends with an arrowhead, the
command syntax is continued, and the next line starts with an arrowhead. A
vertical bar marks the end of the command syntax.

When typing information from a syntax diagram, be sure to include
punctuation, such as quotation marks and equal signs.

Parameters are classified as keywords or variables:
v Keywords represent constants, and are shown in uppercase letters; at the

command prompt, however, keywords can be entered in upper, lower, or
mixed case. A command name is an example of a keyword.

v Variables represent names or values that are supplied by the user, and are
shown in lowercase letters; at the command prompt, however, variables can
be entered in upper, lower, or mixed case, unless case restrictions are
explicitly stated. A file name is an example of a variable.

A parameter can be a combination of a keyword and a variable.

Required parameters are displayed on the main path:

II COMMAND required parameter IM

Optional parameters are displayed below the main path:

II COMMAND
optional parameter

IM

© Copyright IBM Corp. 2001, 2002 203

A parameter’s default value is displayed above the path:

II COMMAND
VALUE1

OPTPARM VALUE2
VALUE3
VALUE4

IM

A stack of parameters, with the first parameter displayed on the main path,
indicates that one of the parameters must be selected:

II COMMAND required choice1
required choice2

IM

A stack of parameters, with the first parameter displayed below the main
path, indicates that one of the parameters can be selected:

II COMMAND
optional_choice1
optional_choice2

IM

An arrow returning to the left, above the path, indicates that items can be
repeated in accordance with the following conventions:
v If the arrow is uninterrupted, the item can be repeated in a list with the

items separated by blank spaces:

II COMMAND K repeatable parameter IM

v If the arrow contains a comma, the item can be repeated in a list with the
items separated by commas:

II COMMAND K

,

repeatable_parameter IM

Items from parameter stacks can be repeated in accordance with the stack
conventions for required and optional parameters discussed previously.

Some syntax diagrams contain parameter stacks within other parameter
stacks. Items from stacks can only be repeated in accordance with the

How to Read the Syntax Diagrams

204 Data Recovery and High Availability Guide and Reference

conventions discussed previously. That is, if an inner stack does not have a
repeat arrow above it, but an outer stack does, only one parameter from the
inner stack can be chosen and combined with any parameter from the outer
stack, and that combination can be repeated. For example, the following
diagram shows that one could combine parameter choice2a with parameter
choice2, and then repeat that combination again (choice2 plus choice2a):

II COMMAND K parameter choice3
parameter choice1
parameter choice2

parameter choice2a
parameter choice2b
parameter choice2c

IM

Some commands are preceded by an optional path parameter:

II COMMAND
path

IM

If this parameter is not supplied, the system searches the current directory for
the command. If it cannot find the command, the system continues searching
for the command in all the directories on the paths listed in the .profile.

Some commands have syntactical variants that are functionally equivalent:

II COMMAND FORM1
COMMAND FORM2

IM

How to Read the Syntax Diagrams

Appendix A. How to Read the Syntax Diagrams 205

How to Read the Syntax Diagrams

206 Data Recovery and High Availability Guide and Reference

Appendix B. Warning, Error and Completion Messages

Messages generated by the various utilities are included among the SQL
messages. These messages are generated by the database manager when a
warning or error condition has been detected. Each message has a message
identifier that consists of a prefix (SQL) and a four- or five-digit message
number. There are three message types: notification, warning, and critical.
Message identifiers ending with an N are error messages. Those ending with a
W indicate warning or informational messages. Message identifiers ending
with a C indicate critical system errors.

The message number is also referred to as the SQLCODE. The SQLCODE is
passed to the application as a positive or negative number, depending on its
message type (N, W, or C). N and C yield negative values, whereas W yields
a positive value. DB2 returns the SQLCODE to the application, and the
application can get the message associated with the SQLCODE. DB2 also
returns an SQLSTATE value for conditions that could be the result of an SQL
statement. Some SQLCODE values have associated SQLSTATE values.

You can use the information contained in this book to identify an error or
problem, and to resolve the problem by using the appropriate recovery action.
This information can also be used to understand where messages are
generated and logged.

SQL messages, and the message text associated with SQLSTATE values, are
also accessible from the operating system command line. To access help for
these error messages, enter the following at the operating system command
prompt:

db2 ? SQLnnnnn

where nnnnn represents the message number. On UNIX based systems, the
use of double quotation mark delimiters is recommended; this will avoid
problems if there are single character file names in the directory:

db2 "? SQLnnnnn"

The message identifier accepted as a parameter for the db2 command is not
case sensitive, and the terminating letter is not required. Therefore, the
following commands will produce the same result:

db2 ? SQL0000N
db2 ? sql0000
db2 ? SQL0000n

© Copyright IBM Corp. 2001, 2002 207

If the message text is too long for your screen, use the following command
(on UNIX based operating systems and others that support the ″more″ pipe):

db2 ? SQLnnnnn | more

You can also redirect the output to a file which can then be browsed.

Help can also be invoked from interactive input mode. To access this mode,
enter the following at the operating system command prompt:

db2

To get DB2 message help in this mode, type the following at the command
prompt (db2 =>):

? SQLnnnnn

The message text associated with SQLSTATEs can be retrieved by issuing:
db2 ? nnnnn
or
db2 ? nn

where nnnnn is a five-character SQLSTATE value (alphanumeric), and nn is a
two-digit SQLSTATE class code (the first two digits of the SQLSTATE value).

208 Data Recovery and High Availability Guide and Reference

Appendix C. Additional DB2 Commands

System Commands

db2adutl - Work with TSM Archived Images

Allows users to query, extract, verify, and delete backup images, logs, and
load copy images saved using Tivoli Storage Manager (formerly ADSM).

On UNIX-based operating systems, this utility is located in the sqllib/adsm
directory. On Windows it is located in sqllib\bin.

Authorization:

None

Required connection:

None

Command syntax:

II db2adutl I

© Copyright IBM Corp. 2001, 2002 209

I QUERY

TABLESPACE NONINCREMENTAL SHOW INACTIVE
FULL INCREMENTAL

DELTA
LOADCOPY

LOGS
BETWEEN sn1 AND sn2

EXTRACT

TABLESPACE NONINCREMENTAL SHOW INACTIVE TAKEN AT timestamp
FULL INCREMENTAL

DELTA
LOADCOPY

LOGS
BETWEEN sn1 AND sn2

DELETE

TABLESPACE NONINCREMENTAL KEEP n
FULL INCREMENTAL OLDER timestamp

DELTA THAN n days
LOADCOPY TAKEN AT timestamp

LOGS
BETWEEN sn1 AND sn2

VERIFY
TABLESPACE NONINCREMENTAL SHOW INACTIVE TAKEN AT timestamp
FULL INCREMENTAL

DELTA

I

I
DATABASE database_name
DB

DBPARTITIONNUM db-partition-number PASSWORD password
I

I
NODENAME node_name WITHOUT PROMPTING OWNER owner VERBOSE

IM

Command parameters:

QUERY
Queries the TSM server for DB2 objects.

EXTRACT
Copies DB2 objects from the TSM server to the current directory on
the local machine.

DELETE
Either deactivates backup objects or deletes log archives on the TSM
server.

VERIFY
Performs consistency checking on the backup copy that is on the
server.

Note: This parameter causes the entire backup image to be transferred
over the network.

TABLESPACE
Includes only table space backup images.

FULL Includes only full database backup images.

db2adutl - Work with TSM Archived Images

210 Data Recovery and High Availability Guide and Reference

NONINCREMENTAL
Include only non-incremental backup images.

INCREMENTAL
Include only incremental backup images.

DELTA
Include only incremental delta backup images.

LOADCOPY
Includes only load copy images.

LOGS Includes only log archive images

BETWEEN sn1 AND sn2
Specifies that the logs between log sequence number 1 and log
sequence number 2 are to be used.

SHOW INACTIVE
Includes backup objects that have been deactivated.

TAKEN AT timestamp
Specifies a backup image by its time stamp.

KEEP n
Deactivates all objects of the specified type except for the most recent
n by time stamp.

OLDER THAN timestamp or n days
Specifies that objects with a time stamp earlier than timestamp or n
days will be deactivated.

DATABASE database_name
Considers only those objects associated with the specified database
name.

DBPARTITIONNUM db-partition-number
Considers only those objects created by the specified database
partition number.

PASSWORD password
Specifies the TSM client password for this node, if required. If a
database is specified and the password is not provided, the value
specified for the tsm_password database configuration parameter is
passed to TSM; otherwise, no password is used.

NODENAME node_name
Considers only those images associated with a specific TSM node
name.

WITHOUT PROMPTING
The user is not prompted for verification before objects are deleted.

db2adutl - Work with TSM Archived Images

Appendix C. Additional DB2 Commands 211

OWNER owner
Considers only those objects created by the specified owner.

VERBOSE
Displays additional file information

Examples:

The following is sample output from: db2 backup database rawsampl use tsm

Backup successful. The timestamp for this backup is : 19970929130942

db2adutl query

Query for database RAWSAMPL

Retrieving full database backup information.
full database backup image: 1, Time: 19970929130942,

Oldest log: S0000053.LOG, Sessions used: 1
full database backup image: 2, Time: 19970929142241,

Oldest log: S0000054.LOG, Sessions used: 1

Retrieving table space backup information.
table space backup image: 1, Time: 19970929094003,

Oldest log: S0000051.LOG, Sessions used: 1
table space backup image: 2, Time: 19970929093043,

Oldest log: S0000050.LOG, Sessions used: 1
table space backup image: 3, Time: 19970929105905,

Oldest log: S0000052.LOG, Sessions used: 1

Retrieving log archive information.
Log file: S0000050.LOG
Log file: S0000051.LOG
Log file: S0000052.LOG
Log file: S0000053.LOG
Log file: S0000054.LOG
Log file: S0000055.LOG

The following is sample output from: db2adutl delete full taken at
19950929130942 db rawsampl

Query for database RAWSAMPL

Retrieving full database backup information. Please wait.

full database backup image: RAWSAMPL.0.db26000.0.19970929130942.001

Do you want to deactivate this backup image (Y/N)? y

Are you sure (Y/N)? y

db2adutl query

Query for database RAWSAMPL

db2adutl - Work with TSM Archived Images

212 Data Recovery and High Availability Guide and Reference

Retrieving full database backup information.
full database backup image: 2, Time: 19950929142241,

Oldest log: S0000054.LOG, Sessions used: 1

Retrieving table space backup information.
table space backup image: 1, Time: 19950929094003,

Oldest log: S0000051.LOG, Sessions used: 1
table space backup image: 2, Time: 19950929093043,

Oldest log: S0000050.LOG, Sessions used: 1
table space backup image: 3, Time: 19950929105905,

Oldest log: S0000052.LOG, Sessions used: 1

Retrieving log archive information.
Log file: S0000050.LOG
Log file: S0000051.LOG
Log file: S0000052.LOG
Log file: S0000053.LOG
Log file: S0000054.LOG
Log file: S0000055.LOG

Usage Notes:

One parameter from each group below can be used to restrict what backup
images types are included in the operation:

Granularity:

v FULL - include only database backup images.
v TABLESPACE - include only table space backup images.

Cumulativiness:

v NONINCREMENTAL - include only non-incremental backup images.
v INCREMENTAL - include only incremental backup images.
v DELTA - include only incremental delta backup images.

Compatibilities:

For compatibility with versions earlier than Version 8:
v The keyword NODE can be substituted for DBPARTITIONNUM.

db2ckbkp - Check Backup

This utility can be used to test the integrity of a backup image and to
determine whether or not the image can be restored. It can also be used to
display the meta-data stored in the backup header.

Authorization:

db2adutl - Work with TSM Archived Images

Appendix C. Additional DB2 Commands 213

Anyone can access the utility, but users must have read permissions on image
backups in order to execute this utility against them.

Required connection:

None

Command syntax:

II db2ckbkp K

,

-a
-c
-d
-h
-H
-l
-n
-o

K

,

filename IM

Command parameters:

-a Displays all available information.

-c Displays results of checkbits and checksums.

-d Displays information from the headers of DMS table space data pages.

-h Displays media header information including the name and path of
the image expected by the restore utility.

-H Displays the same information as -h but only reads the 4K media
header information from the beginning of the image. It does not
validate the image.

Note: This option cannot be used in combination with any other
options.

-l Displays Log File Header data.

-n Prompt for tape mount. Assume one tape per device.

-o Displays detailed information from the object headers.

filename
The name of the backup image file. One or more files can be checked
at a time.

db2ckbkp - Check Backup

214 Data Recovery and High Availability Guide and Reference

Notes:

1. If the complete backup consists of multiple objects, the validation
will only succeed if db2ckbkp is used to validate all of the objects
at the same time.

2. When checking multiple parts of an image, the first backup image
object (.001) must be specified first.

Examples:
db2ckbkp SAMPLE.0.krodger.NODE0000.CATN0000.19990817150714.*
[1] Buffers processed: ##
[2] Buffers processed: ##
[3] Buffers processed: ##
Image Verification Complete - successful.

db2ckbkp -h SAMPLE2.0.krodger.NODE0000.CATN0000.19990818122909.001

=====================
MEDIA HEADER REACHED:
=====================

Server Database Name -- SAMPLE2
Server Database Alias -- SAMPLE2
Client Database Alias -- SAMPLE2
Timestamp -- 19990818122909
Database Partition Number -- 0
Instance -- krodger
Sequence Number -- 1
Release ID -- 900
Database Seed -- 65E0B395
DB Comment’s Codepage (Volume) -- 0
DB Comment (Volume) --
DB Comment’s Codepage (System) -- 0
DB Comment (System) --
Authentication Value -- 255
Backup Mode -- 0
Backup Type -- 0
Backup Gran. -- 0
Status Flags -- 11
System Cats inc -- 1
Catalog Database Partition No. -- 0
DB Codeset -- ISO8859-1
DB Territory --
Backup Buffer Size -- 4194304
Number of Sessions -- 1
Platform -- 0

The proper image file name would be:
SAMPLE2.0.krodger.NODE0000.CATN0000.19990818122909.001

[1] Buffers processed: ####
Image Verification Complete - successful.

db2ckbkp - Check Backup

Appendix C. Additional DB2 Commands 215

Usage notes:

1. If a backup image was created using multiple sessions, db2ckbkp can
examine all of the files at the same time. Users are responsible for
ensuring that the session with sequence number 001 is the first file
specified.

2. This utility can also verify backup images that are stored on tape (except
images that were created with a variable block size). This is done by
preparing the tape as for a restore operation, and then invoking the utility,
specifying the tape device name. For example, on UNIX based systems:

db2ckbkp -h /dev/rmt0

and on Windows:
db2ckbkp -d \\.\tape1

3. If the image is on a tape device, specify the tape device path. You will be
prompted to ensure it is mounted, unless option ’-n’ is given. If there are
multiple tapes, the first tape must be mounted on the first device path
given. (That is the tape with sequence 001 in the header).
The default when a tape device is detected is to prompt the user to mount
the tape. The user has the choice on the prompt. Here is the prompt and
options: (where the device I specified is on device path /dev/rmt0)

Please mount the source media on device /dev/rmt0.
Continue(c), terminate only this device(d), or abort this tool(t)?
(c/d/t)

The user will be prompted for each device specified, and when the device
reaches the end of tape.

Related reference:

v “db2adutl - Work with TSM Archived Images” on page 209

db2ckrst - Check Incremental Restore Image Sequence

Queries the database history and generates a list of timestamps for the backup
images that are required for an incremental restore. A simplified restore syntax
for a manual incremental restore is also generated.

Authorization:

None

Required connection:

None

Command syntax:

db2ckbkp - Check Backup

216 Data Recovery and High Availability Guide and Reference

II db2ckrst -d database name -t timestamp
database

-r tablespace

I

I

K-n tablespace name

-h
-u
-?

IM

Command parameters:

-d database name file-name
Specifies the alias name for the database that will be restored.

-t timestamp
Specifies the timestamp for a backup image that will be incrementally
restored.

-r Specifies the type of restore that will be executed. The default is
database.

Note: If tablespace is chosen and no table space names are given, the
utility looks into the history entry of the specified image and
uses the table space names listed to do the restore.

-n tablespace name
Specifies the name of one or more table spaces that will be restored.

Note: If a database restore type is selected and a list of table space
names is specified, the utility will continue as a tablespace
restore using the table space names given.

-h/-u/-?
Displays help information. When this option is specified, all other
options are ignored, and only the help information is displayed.

Examples:
db2ckrst -d mr -t 20001015193455 -r database
db2ckrst -d mr -t 20001015193455 -r tablespace
db2ckrst -d mr -t 20001015193455 -r tablespace -n tbsp1 tbsp2

> db2 backup db mr

Backup successful. The timestamp for this backup image is : 20001016001426

> db2 backup db mr incremental

Backup successful. The timestamp for this backup image is : 20001016001445

> db2ckrst -d mr -t 20001016001445

db2ckrst - Check Incremental Restore Image Sequence

Appendix C. Additional DB2 Commands 217

Suggested restore order of images using timestamp 20001016001445 for
database mr.
===

db2 restore db mr incremental taken at 20001016001445
db2 restore db mr incremental taken at 20001016001426
db2 restore db mr incremental taken at 20001016001445

===

> db2ckrst -d mr -t 20001016001445 -r tablespace -n userspace1
Suggested restore order of images using timestamp 20001016001445 for
database mr.
===

db2 restore db mr tablespace (USERSPACE1) incremental taken at
20001016001445
db2 restore db mr tablespace (USERSPACE1) incremental taken at
20001016001426
db2 restore db mr tablespace (USERSPACE1) incremental taken at
20001016001445

===

Usage notes:

The database history must exist in order for this utility to be used. If the
database history does not exist, specify the HISTORY FILE option in the
RESTORE command before using this utility.

If the FORCE option of the PRUNE HISTORY command is used, you will be
able to delete entries that are required for recovery from the most recent, full
database backup image. The default operation of the PRUNE HISTORY
command prevents required entries from being deleted. It is recommended
that you do not use the FORCE option of the PRUNE HISTORY command.

This utility should not be used as a replacement for keeping records of your
backups.

db2flsn - Find Log Sequence Number

Returns the name of the file that contains the log record identified by a
specified log sequence number (LSN).

Authorization:

None

Command syntax:

II db2flsn
-q

input_LSN IM

db2ckrst - Check Incremental Restore Image Sequence

218 Data Recovery and High Availability Guide and Reference

Command parameters:

-q Specifies that only the log file name be printed. No error or warning
messages will be printed, and status can only be determined through
the return code. Valid error codes are:
v -100 Invalid input
v -101 Cannot open LFH file
v -102 Failed to read LFH file
v -103 Invalid LFH
v -104 Database is not recoverable
v -105 LSN too big
v -500 Logical error.

Other valid return codes are:
v 0 Successful execution
v 99 Warning: the result is based on the last known log file size.

input_LSN
A 12-byte string that represents the internal (6-byte) hexadecimal
value with leading zeros.

Examples:
db2flsn 000000BF0030

Given LSN is contained in log file S0000002.LOG

db2flsn -q 000000BF0030
S0000002.LOG

db2flsn 000000BE0030
Warning: the result is based on the last known log file size.
The last known log file size is 23 4K pages starting from log extent 2.

Given LSN is contained in log file S0000001.LOG

db2flsn -q 000000BE0030
S0000001.LOG

Usage notes:

The log header control file SQLOGCTL.LFH must reside in the current directory.
Since this file is located in the database directory, the tool can be run from the
database directory, or the control file can be copied to the directory from
which the tool will be run.

The tool uses the logfilsiz database configuration parameter. DB2 records the
three most recent values for this parameter, and the first log file that is created
with each logfilsiz value; this enables the tool to work correctly when logfilsiz

db2flsn - Find Log Sequence Number

Appendix C. Additional DB2 Commands 219

changes. If the specified LSN predates the earliest recorded value of logfilsiz,
the tool uses this value, and returns a warning. The tool can be used with
database managers prior to UDB Version 5.2; in this case, the warning is
returned even with a correct result (obtained if the value of logfilsiz remains
unchanged).

This tool can only be used with recoverable databases. A database is
recoverable if it is configured with logretain set to RECOVERY or userexit set to
ON.

db2inidb - Initialize a Mirrored Database

Initializes a mirrored database in a split mirror environment. The mirrored
database can be initialized as a clone of the primary database, placed in roll
forward pending state, or used as a backup image to restore the primary
database.

Authorization:

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection:

None

Command syntax:

II db2inidb database_alias AS SNAPSHOT
STANDBY
MIRROR

RELOCATE USING configFile
IM

Command parameters:

database_alias
Specifies the alias of the database to be initialized.

SNAPSHOT
Specifies that the mirrored database will be initialized as a clone of
the primary database.

STANDBY
Specifies that the database will be placed in roll forward pending
state.

db2flsn - Find Log Sequence Number

220 Data Recovery and High Availability Guide and Reference

Note: New logs from the primary database can be fetched and
applied to the standby database. The standby database can then
be used in place of the primary database if it goes down.

MIRROR
Specifies that the mirrored database is to be used as a backup image
which can be used to restore the primary database.

RELOCATE USING configFile
Specifies that the database files are to be relocated based on the
information listed in the configuration file.

Related reference:

v “db2relocatedb - Relocate Database” in the Command Reference

db2mscs - Set up Windows Failover Utility

Creates the infrastructure for DB2 failover support on Windows using
Microsoft Cluster Server (MSCS). This utility can be used to enable failover in
both single-partition and partitioned database environments.

Authorization:

The user must be logged on to a domain user account that belongs to the
Administrators group of each machine in the MSCS cluster.

Command syntax:

II db2mscs
-f: input_file
-u: instance_name

IM

Command parameters:

-f:input_file
Specifies the DB2MSCS.CFG input file to be used by the MSCS utility. If
this parameter is not specified, the DB2MSCS utility reads the
DB2MSCS.CFG file that is in the current directory.

-u:instance_name
This option allows you to undo the db2mscs operation and revert the
instance back to the non-MSCS instance specified by instance_name.

Usage notes:

The DB2MSCS utility is a standalone command line utility used to transform
a non-MSCS instance into an MSCS instance. The utility will create all MSCS
groups, resources, and resource dependencies. It will also copy all DB2

db2inidb - Initialize a Mirrored Database

Appendix C. Additional DB2 Commands 221

information stored in the Windows registry to the cluster portion of the
registry as well as moving the instance directory to a shared cluster disk. The
DB2MSCS utility takes as input a configuration file provided by the user
specifying how the cluster should be set up. The DB2MSCS.CFG file is an
ASCII text file that contains parameters that are read by the DB2MSCS utility.
You specify each input parameter on a separate line using the following
format: PARAMETER_KEYWORD=parameter_value. For example:

CLUSTER_NAME=FINANCE
GROUP_NAME=DB2 Group
IP_ADDRESS=9.21.22.89

Two example configuration files can be found in the CFG subdirectory under
the DB2 install directory. The first, DB2MSCS.EE, is an example for
single-partition database environments. The second, DB2MSCS.EEE, is an
example for partitioned database environments.

The parameters for the DB2MSCS.CFG file are as follows:

DB2_INSTANCE
The name of the DB2 instance. This parameter has a global scope and
should be specified only once in the DB2MSCS.CFG file.

DAS_INSTANCE
The name of the DB2 Admin Server instance. Specify this parameter
to migrate the DB2 Admin Server to run in the MSCS environment.
This parameter has a global scope and should be specified only once
in the DB2MSCS.CFG file.

CLUSTER_NAME
The name of the MSCS cluster. All the resources specified following
this line are created in this cluster until another CLUSTER_NAME
parameter is specified.

DB2_LOGON_USERNAME
The username of the domain account for the DB2 service (i.e.
domain\user). This parameter has a global scope and should be
specified only once in the DB2MSCS.CFG file.

DB2_LOGON_PASSWORD
The password of the domain account for the DB2 service. This
parameter has a global scope and should be specified only once in the
DB2MSCS.CFG file.

GROUP_NAME
The name of the MSCS group. If this parameter is specified, a new
MSCS group is created if it does not exist. If the group already exists,
it is used as the target group. Any MSCS resource specified after this

db2mscs - Set up Windows Failover Utility

222 Data Recovery and High Availability Guide and Reference

parameter is created in this group or moved into this group until
another GROUP_NAME parameter is specified. Specify this parameter
once for each group.

DB2_NODE
The partition number of the database partition server (or database
partition) to be included in the current MSCS group. If multiple
logical database partitions exist on the same machine, each database
partition requires a separate DB2_NODE parameter. Specify this
parameter after the GROUP_NAME parameter so that the DB2
resources are created in the correct MSCS group. This parameter is
required for a multi-partitioned database system.

IP_NAME
The name of the IP Address resource. The value for the IP_NAME is
arbitrary, but it must be unique in the cluster. When this parameter is
specified, an MSCS resource of type IP Address is created. This
parameter is required for remote TCP/IP connections. This parameter
is optional in a single partition environment. A recommended name is
the hostname that corresponds to the IP address.

IP_ADDRESS
The TCP/IP address for the IP resource specified by the preceding
IP_NAME parameter. This parameter is required if the IP_NAME
parameter is specified. This is a new IP address that is not used by
any machine in the network.

IP_SUBNET
The TCP/IP subnet mask for the IP resource specified by the
preceding IP_NAME parameter. This parameter is required if the
IP_NAME parameter is specified.

IP_NETWORK
The name of the MSCS network to which the preceding IP Address
resource belongs. This parameter is optional. If it is not specified, the
first MSCS network detected by the system is used. The name of the
MSCS network must be entered exactly as seen under the Networks
branch in Cluster Administrator.

Note: The previous four IP keywords are used to create an IP Address
resource.

NETNAME_NAME
The name of the Network Name resource. Specify this parameter to
create the Network Name resource. This parameter is optional for
single partition database environment. You must specify this
parameter for the instance owning machine in a partitioned database
environment.

db2mscs - Set up Windows Failover Utility

Appendix C. Additional DB2 Commands 223

NETNAME_VALUE
The value for the Network Name resource. This parameter must be
specified if the NETNAME_NAME parameter is specified.

NETNAME_DEPENDENCY
The name for the IP resource that the Network Name resource
depends on. Each Network Name resource must have a dependency
on an IP Address resource. This parameter is optional. If it is not
specified, the Network Name resource has a dependency on the first
IP resource in the group.

SERVICE_DISPLAY_NAME
The display name of the Generic Service resource. Specify this
parameter if you want to create a Generic Service resource.

SERVICE_NAME
The service name of the Generic Service resource. This parameter
must be specified if the SERVICE_DISPLAY_NAME parameter is
specified.

SERVICE_STARTUP
Optional startup parameter for the Generic Resource service.

DISK_NAME
The name of the physical disk resource to be moved to the current
group. Specify as many disk resources as you need. The disk
resources must already exist. When the DB2MSCS utility configures
the DB2 instance for failover support, the instance directory is copied
to the first MSCS disk in the group. To specify a different MSCS disk
for the instance directory, use the INSTPROF_DISK parameter. The
disk name used should be entered exactly as seen in Cluster
Administrator.

INSTPROF_DISK
An optional parameter to specify an MSCS disk to contain the DB2
instance directory. If this parameter is not specified the DB2MSCS
utility uses the first disk that belongs to the same group.

INSTPROF_PATH
An optional parameter to specify the exact path where the instance
directory will be copied. This parameter MUST be specified when
using IPSHAdisks, a ServerRAID Netfinity disk resource (i.e.
INSTPROF_PATH=p:\db2profs). INSTPROF_PATH will take
precedence over INSTPROF_DISK if both are specified.

TARGET_DRVMAP_DISK
An optional parameter to specify the target MSCS disk for database
drive mapping for a the multi-partitioned database system. This
parameter will specify the disk the database will be created on by
mapping it from the drive the create database command specifies. If

db2mscs - Set up Windows Failover Utility

224 Data Recovery and High Availability Guide and Reference

this parameter is not specified, the database drive mapping must be
manually registered using the DB2DRVMP utility.

DB2_FALLBACK
An optional parameter to control whether or not the applications
should be forced off when the DB2 resource is brought offline. If not
specified, then the setting for DB2_FALLBACK will beYES. If you do
not want the applications to be forced off, then set DB2_FALLBACK
to NO.

CLP Commands

ARCHIVE LOG

Closes and truncates the active log file for a recoverable database. If user exit
is enabled, an archive request is issued.

Authorization:

One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required connection:

None. This command establishes a database connection for the duration of the
command.

Command syntax:

II ARCHIVE LOG FOR DATABASE
DB

database-alias I

I
USER username

USING password

I

I
On Database Partition Number Clause

IM

db2mscs - Set up Windows Failover Utility

Appendix C. Additional DB2 Commands 225

On Database Partition Number Clause:

ON I

I Database Partition Number List Clause
ALL DBPARTITIONNUMS

EXCEPT Database Partition Number List Clause

Database Partition Number List Clause:

DBPARTITIONNUM
DBPARTITIONNUMS

K

,

(db-partition-number)
TO db-partition-number

Command parameters:

DATABASE database-alias
Specifies the alias of the database whose active log is to be archived.

USER username
Identifies the user name under which a connection will be attempted.

USING password
Specifies the password to authenticate the user name.

ON ALL DBPARTITIONNUMS
Specifies that the command should be issued on all database
partitions in the db2nodes.cfg file. This is the default if a database
partition number clause is not specified.

EXCEPT
Specifies that the command should be issued on all database
partitions in the db2nodes.cfg file, except those specified in the
database partition number list.

ON DBPARTITIONNUM/ON DBPARTITIONNUMS
Specifies that the logs should be archived for the specified database
on a set of database partitions.

db-partition-number
Specifies a database partition number in the database partition
number list.

TO db-partition-number
Used when specifying a range of database partitions for which the
logs should be archived. All database partitions from the first

ARCHIVE LOG

226 Data Recovery and High Availability Guide and Reference

database partition number specified up to and including the second
database partition number specified are included in the database
partition number list.

Usage notes:

This command can be used to collect a complete set of log files up to a known
point. The log files can then be used to update a standby database.

This command can only be executed when the invoking application or shell
does not have a database connection to the specified database. This prevents a
user from executing the command with uncommitted transactions. As such,
the ARCHIVE LOG command will not forcibly commit the user’s incomplete
transactions. If the invoking application or shell already has a database
connection to the specified database, the command will terminate and return
an error. If another application has transactions in progress with the specified
database when this command is executed, there will be a slight performance
degradation since the command flushes the log buffer to disk. Any other
transactions attempting to write log records to the buffer will have to wait
until the flush is complete.

If used in a partitioned database environment, a subset of database partitions
may be specified by using a database partition number clause. If the database
partition number clause is not specified, the default behaviour for this
command is to close and archive the active log on all database partitions.

Using this command will use up a portion of the active log space due to the
truncation of the active log file. The active log space will resume its previous
size when the truncated log becomes inactive. Frequent use of this command
may drastically reduce the amount of the active log space available for
transactions.

Compatibilities:

For compatibility with versions earlier than Version 8:
v The keyword NODE can be substituted for DBPARTITIONNUM.
v The keyword NODES can be substituted for DBPARTITIONNUMS.

INITIALIZE TAPE

When running on Windows NT-based operating systems, DB2 supports
backup and restore operations to streaming tape devices. Use this command
for tape initialization.

Authorization:

ARCHIVE LOG

Appendix C. Additional DB2 Commands 227

None

Required connection:

None

Command syntax:

II INITIALIZE TAPE
ON device USING blksize

IM

Command parameters:

ON device
Specifies a valid tape device name. The default value is \\.\TAPE0.

USING blksize
Specifies the block size for the device, in bytes. The device is
initialized to use the block size specified, if the value is within the
supported range of block sizes for the device.

Note: The buffer size specified for the BACKUP DATABASE
command and for RESTORE DATABASE must be divisible by
the block size specified here.

If a value for this parameter is not specified, the device is initialized
to use its default block size. If a value of zero is specified, the device
is initialized to use a variable length block size; if the device does not
support variable length block mode, an error is returned.

Related reference:

v “BACKUP DATABASE” on page 72
v “RESTORE DATABASE” on page 95
v “REWIND TAPE” on page 232
v “SET TAPE POSITION” on page 233

LIST HISTORY

Lists entries in the history file. The history file contains a record of recovery
and administrative events. Recovery events include full database and table
space level backup, incremental backup, restore, and rollforward operations.
Additional logged events include create, alter, drop, or rename table space,
reorganize table, drop table, and load.

Authorization:

INITIALIZE TAPE

228 Data Recovery and High Availability Guide and Reference

None

Required connection:

Instance. An explicit attachment is not required. If the database is listed as
remote, an instance attachment to the remote node is established for the
duration of the command.

Command syntax:

II LIST HISTORY
BACKUP
ROLLFORWARD
DROPPED TABLE
LOAD
CREATE TABLESPACE
ALTER TABLESPACE
RENAME TABLESPACE
REORG

ALL
SINCE timestamp
CONTAINING schema.object_name

object_name

I

I FOR database-alias
DATABASE
DB

IM

Command parameters:

HISTORY
Lists all events that are currently logged in the history file.

BACKUP
Lists backup and restore operations.

ROLLFORWARD
Lists rollforward operations.

DROPPED TABLE
Lists dropped table records.

LOAD
Lists load operations.

CREATE TABLESPACE
Lists table space create and drop operations.

RENAME TABLESPACE
Lists table space renaming operations.

REORG
Lists reorganization operations.

LIST HISTORY

Appendix C. Additional DB2 Commands 229

ALTER TABLESPACE
Lists alter table space operations.

ALL Lists all entries of the specified type in the history file.

SINCE timestamp
A complete time stamp (format yyyymmddhhnnss), or an initial prefix
(minimum yyyy) can be specified. All entries with time stamps equal
to or greater than the time stamp provided are listed.

CONTAINING schema.object_name
This qualified name uniquely identifies a table.

CONTAINING object_name
This unqualified name uniquely identifies a table space.

FOR DATABASE database-alias
Used to identify the database whose recovery history file is to be
listed.

Examples:
db2 list history since 19980201 for sample
db2 list history backup containing userspace1 for sample
db2 list history dropped table all for db sample

Usage notes:

The report generated by this command contains the following symbols:
Operation

A - Create table space
B - Backup
C - Load copy
D - Dropped table
F - Roll forward
G - Reorganize table
L - Load
N - Rename table space
O - Drop table space
Q - Quiesce
R - Restore
T - Alter table space
U - Unload

Type

Backup types:

F - Offline
N - Online
I - Incremental offline
O - Incremental online

LIST HISTORY

230 Data Recovery and High Availability Guide and Reference

D - Delta offline
E - Delta online

Rollforward types:

E - End of logs
P - Point in time

Load types:

I - Insert
R - Replace

Alter tablespace types:

C - Add containers
R - Rebalance

Quiesce types:

S - Quiesce share
U - Quiesce update
X - Quiesce exclusive
Z - Quiesce reset

PRUNE HISTORY/LOGFILE

Used to delete entries from the recovery history file, or to delete log files from
the active log file path. Deleting entries from the recovery history file may be
necessary if the file becomes excessively large and the retention period is
high. Deleting log files from the active log file path may be necessary if logs
are being archived manually (rather than through a user exit program).

Authorization:

One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required connection:

Database

Command syntax:

LIST HISTORY

Appendix C. Additional DB2 Commands 231

II PRUNE HISTORY timestamp
WITH FORCE OPTION

LOGFILE PRIOR TO log-file-name

IM

Command parameters:

HISTORY timestamp
Identifies a range of entries in the recovery history file that will be
deleted. A complete time stamp (in the form yyyymmddhhmmss), or an
initial prefix (minimum yyyy) can be specified. All entries with time
stamps equal to or less than the time stamp provided are deleted from
the recovery history file.

WITH FORCE OPTION
Specifies that the entries will be pruned according to the time stamp
specified, even if some entries from the most recent restore set are
deleted from the file. A restore set is the most recent full database
backup including any restores of that backup image. If this parameter
is not specified, all entries from the backup image forward will be
maintained in the history.

LOGFILE PRIOR TO log-file-name
Specifies a string for a log file name, for example S0000100.LOG. All
log files prior to (but not including) the specified log file will be
deleted. The LOGRETAIN database configuration parameter must be
set to RECOVERY or CAPTURE.

Examples:

To remove the entries for all restores, loads, table space backups, and full
database backups taken before and including December 1, 1994 from the
recovery history file, enter:

db2 prune history 199412

Note: 199412 is interpreted as 19941201000000.

Usage notes:

Pruning backup entries from the history file causes related file backups on
DB2 Data Links Manager servers to be deleted.

REWIND TAPE

When running on Windows NT-based operating systems, DB2 supports
backup and restore operations to streaming tape devices. Use this command
for tape rewinding.

PRUNE HISTORY/LOGFILE

232 Data Recovery and High Availability Guide and Reference

Authorization:

None

Required connection:

None

Command syntax:

II REWIND TAPE
ON device

IM

Command parameters:

ON device
Specifies a valid tape device name. The default value is \\.\TAPE0.

Related reference:

v “INITIALIZE TAPE” on page 227
v “SET TAPE POSITION” on page 233

SET TAPE POSITION

When running on Windows NT-based operating systems, DB2 supports
backup and restore operations to streaming tape devices. Use this command
for tape positioning.

Authorization:

None

Required connection:

None

Command syntax:

II SET TAPE POSITION
ON device

TO position IM

Command parameters:

ON device
Specifies a valid tape device name. The default value is \\.\TAPE0.

REWIND TAPE

Appendix C. Additional DB2 Commands 233

TO position
Specifies the mark at which the tape is to be positioned. DB2 for
Windows NT/2000 writes a tape mark after every backup image. A
value of 1 specifies the first position, 2 specifies the second position,
and so on. If the tape is positioned at tape mark 1, for example,
archive 2 is positioned to be restored.

Related reference:

v “INITIALIZE TAPE” on page 227
v “REWIND TAPE” on page 232

UPDATE HISTORY FILE

Updates the location, device type, or comment in a history file entry.

Authorization:

One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required connection:

Database

Command syntax:

II UPDATE HISTORY FOR object-part WITH I

I LOCATION new-location DEVICE TYPE new-device-type
COMMENT new-comment

IM

Command parameters:

FOR object-part
Specifies the identifier for the backup or copy image. It is a time
stamp with an optional sequence number from 001 to 999.

LOCATION new-location
Specifies the new physical location of a backup image. The
interpretation of this parameter depends on the device type.

SET TAPE POSITION

234 Data Recovery and High Availability Guide and Reference

DEVICE TYPE new-device-type
Specifies a new device type for storing the backup image. Valid device
types are:

D Disk

K Diskette

T Tape

A TSM

U User exit

P Pipe

N Null device

X XBSA

Q SQL statement

O Other

COMMENT new-comment
Specifies a new comment to describe the entry.

Examples:

To update the history file entry for a full database backup taken on April 13,
1997 at 10:00 a.m., enter:

db2 update history for 19970413100000001 with
location /backup/dbbackup.1 device type d

Usage notes:

The history file is used by database administrators for record keeping. It is
used internally by DB2 for the automatic recovery of incremental backups.

Related reference:

v “PRUNE HISTORY/LOGFILE” on page 231

UPDATE HISTORY FILE

Appendix C. Additional DB2 Commands 235

UPDATE HISTORY FILE

236 Data Recovery and High Availability Guide and Reference

Appendix D. Additional APIs and Associated Data
Structures

© Copyright IBM Corp. 2001, 2002 237

db2ArchiveLog - Archive Active Log API
Closes and truncates the active log file for a recoverable database. If user exit
is enabled, issues an archive request.

Scope
In an MPP environment, this API closes and truncates the active logs on all
nodes.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required Connection
This API automatically establishes a connection to the specified database. If a
connection already exists, an error is returned.

API Include File
db2ApiDf.h

C API Syntax

/* File: db2ApiDf.h */
/* API: Archive Active Log */
/* ... */
SQL_API_RC SQL_API_FN

db2ArchiveLog (
db2Uint32 version,
void * pDB2ArchiveLogStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piDatabaseAlias;
char * piUserName;
char * piPassword;
db2Uint16 iAllNodeFlag;
db2Uint16 iNumNodes;
SQL_PDB_NODE_TYPE * piNodeList;
db2Uint32 iOptions;

} db2ArchiveLogStruct;
/* ... */

db2ArchiveLog - Archive Active Log API

238 Data Recovery and High Availability Guide and Reference

Generic API Syntax

API Parameters

version
Input. Specifies the version and release level of the variable passed in
as the second parameter, pDB2ArchiveLogStruct.

pDB2ArchiveLogStruct
Input. A pointer to the db2ArchiveLogStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

iAliasLen
Input. A 4-byte unsigned integer representing the length in bytes of
the database alias.

iUserNameLen
Input. A 4-byte unsigned integer representing the length in bytes of
the user name. Set to zero if no user name is used.

iPasswordLen
Input. A 4-byte unsigned integer representing the length in bytes of
the password. Set to zero if no password is used.

/* File: db2ApiDf.h */
/* API: Archive Active Log */
/* ... */
SQL_API_RC SQL_API_FN

db2gArchiveLog (
db2Uint32 version,
void * pDB2gArchiveLogStruct,
struct sqlca * pSqlca);

typedef struct
{

db2Uint32 iAliasLen;
db2Uint32 iUserNameLen;
db2Uint32 iPasswordLen;
char * piDatabaseAlias;
char * piUserName;
char * piPassword;
db2Uint16 iAllNodeFlag;
db2Uint16 iNumNodes;
SQL_PDB_NODE_TYPE * piNodeList;
db2Uint32 iOptions;

} db2gArchiveLogStruct;
/* ... */

db2ArchiveLog - Archive Active Log API

Appendix D. Additional APIs and Associated Data Structures 239

piDatabaseAlias
Input. A string containing the database alias (as cataloged in the
system database directory) of the database for which the active log is
to be archived.

piUserName
Input. A string containing the user name to be used when attempting
a connection.

piPassword
Input. A string containing the password to be used when attempting a
connection.

iAllNodeFlag
Input. MPP only. Flag indicating whether the operation should apply
to all nodes listed in the db2nodes.cfg file. Valid values are:

DB2ARCHIVELOG_ALL_NODES
Apply to all nodes (piNodeList should be NULL). This is the
default value.

DB2ARCHIVELOG_NODE_LIST
Apply to all nodes specified in a node list that is passed in
piNodeList.

DB2ARCHIVELOG_ALL_EXCEPT
Apply to all nodes except those specified in a node list that is
passed in piNodeList.

iNumNodes
Input. MPP only. Specifies the number of nodes in the piNodeList
array.

piNodeList
Input. MPP only. A pointer to an array of node numbers against
which to apply the archive log operation.

iOptions
Input. Reserved for future use.

Usage Notes
This API can be used to collect a complete set of log files up to a known
point. The log files can then be used to update a standby database.

If other applications have transactions in progress when this API is called, a
slight performance decrement will be noticed when the log buffer is flushed
to disk; other transactions attempting to write log records to the buffer must
wait until the flush has completed.

This API causes the database to lose a portion of its LSN space, thereby
hastening the exhaustion of valid LSNs.

db2ArchiveLog - Archive Active Log API

240 Data Recovery and High Availability Guide and Reference

db2HistoryCloseScan - Close History File Scan

Ends a history file scan and frees DB2 resources required for the scan. This
API must be preceded by a successful call to db2HistoryOpenScan.

Authorization:

None

Required connection:

Instance. It is not necessary to call sqleatin before calling this API.

API include file:

db2ApiDf.h

C API syntax:

Generic API syntax:

API parameters:

version
Input. Specifies the version and release level of the second parameter,
piHandle.

piHandle
Input. Specifies a pointer to the handle for scan access that was
returned by db2HistoryOpenScan.

/* File: db2ApiDf.h */
/* API: db2HistoryCloseScan */
/* ... */
SQL_API_RC SQL_API_FN

db2HistoryCloseScan (
db2Uint32 version,
void *piHandle,
struct sqlca *pSqlca);

/* ... */

/* File: db2ApiDf.h */
/* API: db2GenHistoryCloseScan */
/* ... */
SQL_API_RC SQL_API_FN

db2GenHistoryCloseScan (
db2Uint32 version,
void *piHandle,
struct sqlca *pSqlca);

/* ... */

db2HistoryCloseScan - Close History File Scan

Appendix D. Additional APIs and Associated Data Structures 241

pSqlca
Output. A pointer to the sqlca structure.

REXX API syntax:

REXX API parameters:

scanid Host variable containing the scan identifier returned from OPEN
RECOVERY HISTORY FILE SCAN.

Usage notes:

For a detailed description of the use of the history file APIs, see
db2HistoryOpenScan.

Related reference:

v “db2Prune - Prune History File” on page 253
v “db2HistoryUpdate - Update History File” on page 250
v “db2HistoryOpenScan - Open History File Scan” on page 245
v “db2HistoryGetEntry - Get Next History File Entry” on page 242
v “SQLCA” in the Administrative API Reference

Related samples:

v “dbrecov.sqc -- How to recover a database (C)”
v “dbrecov.sqC -- How to recover a database (C++)”

db2HistoryGetEntry - Get Next History File Entry

Gets the next entry from the history file. This API must be preceded by a
successful call to db2HistoryOpenScan.

Authorization:

None

Required connection:

Instance. It is not necessary to call sqleatin before calling this API.

API include file:

db2ApiDf.h

CLOSE RECOVERY HISTORY FILE :scanid

db2HistoryCloseScan - Close History File Scan

242 Data Recovery and High Availability Guide and Reference

C API syntax:

Generic API syntax:

API parameters:

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, pDB2HistoryGetEntryStruct.

pDB2HistoryGetEntryStruct
Input. A pointer to the db2HistoryGetEntryStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

iHandle
Input. Contains the handle for scan access that was returned by
db2HistoryOpenScan.

/* File: db2ApiDf.h */
/* API: db2HistoryGetEntry */
/* ... */
SQL_API_RC SQL_API_FN

db2HistoryGetEntry (
db2Uint32 version,
void *pDB2HistoryGetEntryStruct,
struct sqlca *pSqlca);

typedef struct
{

db2Uint16 iHandle,
db2Uint16 iCallerAction,
struct db2HistData *pioHistData

} db2HistoryGetEntryStruct;
/* ... */

/* File: db2ApiDf.h */
/* API: db2GenHistoryGetEntry */
/* ... */
SQL_API_RC SQL_API_FN

db2GenHistoryGetEntry (
db2Uint32 version,
void *pDB2GenHistoryGetEntryStruct,
struct sqlca *pSqlca);

typedef struct
{

db2Uint16 iHandle,
db2Uint16 iCallerAction,
struct db2HistData *pioHistData

} db2GenHistoryGetEntryStruct;
/* ... */

db2HistoryGetEntry - Get Next History File Entry

Appendix D. Additional APIs and Associated Data Structures 243

iCallerAction
Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf) are:

DB2HISTORY_GET_ENTRY
Get the next entry, but without any command data.

DB2HISTORY_GET_DDL
Get only the command data from the previous fetch.

DB2HISTORY_GET_ALL
Get the next entry, including all data.

pioHistData
Input. A pointer to the db2HistData structure.

REXX API syntax:

REXX API parameters:

scanid Host variable containing the scan identifier returned from OPEN
RECOVERY HISTORY FILE SCAN.

value A compound REXX host variable into which the history file entry
information is returned. In the following, XXX represents the host
variable name:

XXX.0 Number of first level elements in the variable (always
15)

XXX.1 Number of table space elements

XXX.2 Number of used table space elements

XXX.3 OPERATION (type of operation performed)

XXX.4 OBJECT (granularity of the operation)

XXX.5 OBJECT_PART (time stamp and sequence number)

XXX.6 OPTYPE (qualifier of the operation)

XXX.7 DEVICE_TYPE (type of device used)

XXX.8 FIRST_LOG (earliest log ID)

XXX.9 LAST_LOG (current log ID)

XXX.10 BACKUP_ID (identifier for the backup)

XXX.11 SCHEMA (qualifier for the table name)

XXX.12 TABLE_NAME (name of the loaded table)

GET RECOVERY HISTORY FILE ENTRY :scanid [USING :value]

db2HistoryGetEntry - Get Next History File Entry

244 Data Recovery and High Availability Guide and Reference

XXX.13.0 NUM_OF_TABLESPACES (number of table spaces
involved in backup or restore)

XXX.13.1 Name of the first table space backed up/restored

XXX.13.2 Name of the second table space backed up/restored

XXX.13.3 and so on

XXX.14 LOCATION (where backup or copy is stored)

XXX.15 COMMENT (text to describe the entry).

Usage notes:

The records that are returned will have been selected using the values
specified on the call to db2HistoryOpenScan.

For a detailed description of the use of the history file APIs, see
db2HistoryOpenScan.

Related reference:

v “db2Prune - Prune History File” on page 253
v “db2HistoryUpdate - Update History File” on page 250
v “db2HistoryOpenScan - Open History File Scan” on page 245
v “db2HistoryCloseScan - Close History File Scan” on page 241
v “SQLCA” in the Administrative API Reference

v “db2HistData” on page 267

Related samples:

v “dbrecov.sqc -- How to recover a database (C)”
v “dbrecov.sqC -- How to recover a database (C++)”

db2HistoryOpenScan - Open History File Scan

Starts a history file scan.

Authorization:

None

Required connection:

Instance. It is not necessary to call sqleatin before calling this API. If the
database is cataloged as remote, an instance attachment to the remote node is
established.

db2HistoryGetEntry - Get Next History File Entry

Appendix D. Additional APIs and Associated Data Structures 245

API include file:

db2ApiDf.h

C API syntax:

Generic API syntax:

API parameters:

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, pDB2HistoryOpenStruct.

/* File: db2ApiDf.h */
/* API: db2HistoryOpenScan */
/* ... */
SQL_API_RC SQL_API_FN

db2HistoryOpenScan (
db2Uint32 version,
void *pDB2HistoryOpenStruct,
struct sqlca *pSqlca);

typedef struct
{

char *piDatabaseAlias,
char *piTimestamp,
char *piObjectName,
db2Uint32 oNumRows,
db2Uint16 iCallerAction,
db2Uint16 oHandle

} db2HistoryOpenStruct;
/* ... */

/* File: db2ApiDf.h */
/* API: db2GenHistoryOpenScan */
/* ... */
SQL_API_RC SQL_API_FN

db2GenHistoryOpenScan (
db2Uint32 version,
void *pDB2GenHistoryOpenStruct,
struct sqlca *pSqlca);

typedef struct
{

char *piDatabaseAlias,
char *piTimestamp,
char *piObjectName,
db2Uint32 oNumRows,
db2Uint16 iCallerAction,
db2Uint16 oHandle

} db2GenHistoryOpenStruct;
/* ... */

db2HistoryOpenScan - Open History File Scan

246 Data Recovery and High Availability Guide and Reference

pDB2HistoryOpenStruct
Input. A pointer to the db2HistoryOpenStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

piDatabaseAlias
Input. A pointer to a string containing the database alias.

piTimestamp
Input. A pointer to a string specifying the time stamp to be used for
selecting records. Records whose time stamp is equal to or greater
than this value are selected. Setting this parameter to NULL, or
pointing to zero, prevents the filtering of entries using a time stamp.

piObjectName
Input. A pointer to a string specifying the object name to be used for
selecting records. The object may be a table or a table space. If it is a
table, the fully qualified table name must be provided. Setting this
parameter to NULL, or pointing to zero, prevents the filtering of
entries using the object name.

oNumRows
Output. Upon return from the API, this parameter contains the
number of matching history file entries.

iCallerAction
Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf) are:

DB2HISTORY_LIST_HISTORY
Lists all events that are currently logged in the history file.

DB2HISTORY_LIST_BACKUP
Lists backup and restore operations.

DB2HISTORY_LIST_ROLLFORWARD
Lists rollforward operations.

DB2HISTORY_LIST_DROPPED_TABLE
Lists dropped table records. The DDL field associated with an
entry is not returned. To retrieve the DDL information for an
entry, db2HistoryGetEntry must be called with a caller action
of DB2HISTORY_GET_DDL immediately after the entry is fetched.

DB2HISTORY_LIST_LOAD
Lists load operations.

DB2HISTORY_LIST_CRT_TABLESPACE
Lists table space create and drop operations.

db2HistoryOpenScan - Open History File Scan

Appendix D. Additional APIs and Associated Data Structures 247

DB2HISTORY_LIST_REN_TABLESPACE
Lists table space renaming operations.

DB2HISTORY_LIST_ALT_TABLESPACE
Lists alter table space operations. The DDL field associated
with an entry is not returned. To retrieve the DDL information
for an entry, db2HistoryGetEntry must be called with a caller
action of DB2HISTORY_GET_DDL immediately after the entry is
fetched.

DB2HISTORY_LIST_REORG
Lists REORGANIZE TABLE operations. This value is not
currently supported.

oHandle
Output. Upon return from the API, this parameter contains the handle
for scan access. It is subsequently used in db2HistoryGetEntry, and
db2HistoryCloseScan.

REXX API syntax:

REXX API parameters:

database_alias
The alias of the database whose history file is to be listed.

objname
Specifies the object name to be used for selecting records. The object
may be a table or a table space. If it is a table, the fully qualified table
name must be provided. Setting this parameter to NULL prevents the
filtering of entries using objname.

timestamp
Specifies the time stamp to be used for selecting records. Records
whose time stamp is equal to or greater than this value are selected.
Setting this parameter to NULL prevents the filtering of entries using
timestamp.

value A compound REXX host variable to which history file information is
returned. In the following, XXX represents the host variable name.

XXX.0 Number of elements in the variable (always 2)

XXX.1 Identifier (handle) for future scan access

XXX.2 Number of matching history file entries.

OPEN [BACKUP] RECOVERY HISTORY FILE FOR database_alias
[OBJECT objname] [TIMESTAMP :timestamp]
USING :value

db2HistoryOpenScan - Open History File Scan

248 Data Recovery and High Availability Guide and Reference

Usage notes:

The combination of time stamp, object name and caller action can be used to
filter records. Only records that pass all specified filters are returned.

The filtering effect of the object name depends on the value specified:
v Specifying a table will return records for load operations, because this is the

only information for tables in the history file.
v Specifying a table space will return records for backup, restore, and load

operations for the table space.

Note: To return records for tables, they must be specified as schema.tablename.
Specifying tablename will only return records for table spaces.

A maximum of eight history file scans per process is permitted.

To list every entry in the history file, a typical application will perform the
following steps:
1. Call db2HistoryOpenScan, which will return oNumRows.
2. Allocate an db2HistData structure with space for n oTablespace fields, where

n is an arbitrary number.
3. Set the iDB2NumTablespace field of the db2HistData structure to n.
4. In a loop, perform the following:

v Call db2HistoryGetEntry to fetch from the history file.
v If db2HistoryGetEntry returns an SQLCODE of SQL_RC_OK, use the sqld

field of the db2HistData structure to determine the number of table space
entries returned.

v If db2HistoryGetEntry returns an SQLCODE of
SQLUH_SQLUHINFO_VARS_WARNING, not enough space has been allocated for
all of the table spaces that DB2 is trying to return; free and reallocate the
db2HistData structure with enough space for oDB2UsedTablespace table
space entries, and set iDB2NumTablespace to oDB2UsedTablespace.

v If db2HistoryGetEntry returns an SQLCODE of SQLE_RC_NOMORE, all
history file entries have been retrieved.

v Any other SQLCODE indicates a problem.
5. When all of the information has been fetched, call db2HistoryCloseScan to

free the resources allocated by the call to db2HistoryOpenScan.

The macro SQLUHINFOSIZE(n) (defined in sqlutil) is provided to help
determine how much memory is required for an db2HistData structure with
space for n oTablespace fields.

Related reference:

db2HistoryOpenScan - Open History File Scan

Appendix D. Additional APIs and Associated Data Structures 249

v “db2Prune - Prune History File” on page 253
v “db2HistoryUpdate - Update History File” on page 250
v “db2HistoryGetEntry - Get Next History File Entry” on page 242
v “db2HistoryCloseScan - Close History File Scan” on page 241
v “SQLCA” in the Administrative API Reference

Related samples:

v “dbrecov.sqc -- How to recover a database (C)”
v “dbrecov.sqC -- How to recover a database (C++)”

db2HistoryUpdate - Update History File

Updates the location, device type, or comment in a history file entry.

Authorization:

One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required connection:

Database. To update entries in the history file for a database other than the
default database, a connection to the database must be established before
calling this API.

API include file:

db2ApiDf.h

C API syntax:

db2HistoryOpenScan - Open History File Scan

250 Data Recovery and High Availability Guide and Reference

Generic API syntax:

API parameters:

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, pDB2HistoryUpdateStruct.

pDB2HistoryUpdateStruct
Input. A pointer to the db2HistoryUpdateStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

piNewLocation
Input. A pointer to a string specifying a new location for the backup,
restore, or load copy image. Setting this parameter to NULL, or
pointing to zero, leaves the value unchanged.

/* File: db2ApiDf.h */
/* API: db2HistoryUpdate */
/* ... */
SQL_API_RC SQL_API_FN

db2HistoryUpdate (
db2Uint32 version,
void *pDB2HistoryUpdateStruct,
struct sqlca *pSqlca);

typedef struct
{

char *piNewLocation,
char *piNewDeviceType,
char *piNewComment,
db2Uint32 iEID

} db2HistoryUpdateStruct;
/* ... */

/* File: db2ApiDf.h */
/* API: db2GenHistoryUpdate */
/* ... */
SQL_API_RC SQL_API_FN

db2GenHistoryUpdate (
db2Uint32 version,
void *pDB2GenHistoryUpdateStruct,
struct sqlca *pSqlca);

typedef struct
{

char *piNewLocation,
char *piNewDeviceType,
char *piNewComment,
db2Uint32 iEID

} db2GenHistoryUpdateStruct;
/* ... */

db2HistoryUpdate - Update History File

Appendix D. Additional APIs and Associated Data Structures 251

piNewDeviceType
Input. A pointer to a string specifying a new device type for storing
the backup, restore, or load copy image. Setting this parameter to
NULL, or pointing to zero, leaves the value unchanged.

piNewComment
Input. A pointer to a string specifying a new comment to describe the
entry. Setting this parameter to NULL, or pointing to zero, leaves the
comment unchanged.

iEID Input. A unique identifier that can be used to update a specific entry
in the history file.

REXX API syntax:

REXX API parameters:

value A compound REXX host variable containing information pertaining to
the new location of a history file entry. In the following, XXX
represents the host variable name:

XXX.0 Number of elements in the variable (must be between 1 and
4)

XXX.1 OBJECT_PART (time stamp with a sequence number from 001
to 999)

XXX.2 New location for the backup or copy image (this parameter is
optional)

XXX.3 New device used to store the backup or copy image (this
parameter is optional)

XXX.4 New comment (this parameter is optional).

Usage notes:

This is an update function, and all information prior to the change is replaced
and cannot be recreated. These changes are not logged.

The history file is used for recording purposes only. It is not used directly by
the restore or the rollforward functions. During a restore operation, the
location of the backup image can be specified, and the history file is useful for
tracking this location. The information can subsequently be provided to the
backup utility. Similarly, if the location of a load copy image is moved, the
rollforward utility must be provided with the new location and type of
storage media.

UPDATE RECOVERY HISTORY USING :value

db2HistoryUpdate - Update History File

252 Data Recovery and High Availability Guide and Reference

Related reference:

v “db2Rollforward - Rollforward Database” on page 145
v “db2Prune - Prune History File” on page 253
v “db2HistoryOpenScan - Open History File Scan” on page 245
v “db2HistoryGetEntry - Get Next History File Entry” on page 242
v “db2HistoryCloseScan - Close History File Scan” on page 241
v “SQLCA” in the Administrative API Reference

v “db2Backup - Backup database” on page 77

Related samples:

v “dbrecov.sqc -- How to recover a database (C)”
v “dbrecov.sqC -- How to recover a database (C++)”

db2Prune - Prune History File

Deletes entries from the history file or log files from the active log path.

Authorization:

One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required connection:

Database. To delete entries from the history file for any database other than
the default database, a connection to the database must be established before
calling this API.

API include file:

db2ApiDf.h

C API syntax:

db2HistoryUpdate - Update History File

Appendix D. Additional APIs and Associated Data Structures 253

Generic API syntax:

API parameters:

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, pDB2PruneStruct.

pDB2PruneStruct
Input. A pointer to the db2PruneStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

iStringLen
Input. Specifies the length in bytes of piString.

/* File: db2ApiDf.h */
/* API: db2Prune */
/* ... */
SQL_API_RC SQL_API_FN

db2Prune (
db2Uint32 version,
void *pDB2PruneStruct,
struct sqlca *pSqlca);

typedef struct
{

char *piString,
db2Uint32 iEID,
db2Uint32 iCallerAction,
db2Uint32 iOptions

} db2PruneStruct;
/* ... */

/* File: db2ApiDf.h */
/* API: db2GenPrune */
/* ... */
SQL_API_RC SQL_API_FN

db2GenPrune (
db2Uint32 version,
void *pDB2GenPruneStruct,
struct sqlca *pSqlca);

typedef struct
{

db2Uint32 iStringLen;
char *piString,
db2Uint32 iEID,
db2Uint32 iCallerAction,
db2Uint32 iOptions

} db2GenPruneStruct;
/* ... */

db2Prune - Prune History File

254 Data Recovery and High Availability Guide and Reference

piString
Input. A pointer to a string specifying a time stamp or a log sequence
number (LSN). The time stamp or part of a time stamp (minimum
yyyy, or year) is used to select records for deletion. All entries equal to
or less than the time stamp will be deleted. A valid time stamp must
be provided; there is no default behavior for a NULL parameter.

This parameter can also be used to pass an LSN, so that inactive logs
can be pruned.

iEID Input. Specifies a unique identifier that can be used to prune a single
entry from the history file.

iCallerAction
Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf) are:

DB2PRUNE_ACTION_HISTORY
Remove history file entries.

DB2PRUNE_ACTION_LOG
Remove log files from the active log path.

iOptions
Input. Valid values (defined in db2ApiDf) are:

DB2PRUNE_OPTION_FORCE
Force the removal of the last backup.

DB2PRUNE_OPTION_LSNSTRING
Specify that the value of piString is an LSN, used when a
caller action of DB2PRUNE_ACTION_LOG is specified.

REXX API syntax:

REXX API parameters:

timestamp
A host variable containing a time stamp. All entries with time stamps
equal to or less than the time stamp provided are deleted from the
history file.

WITH FORCE OPTION
If specified, the history file will be pruned according to the time
stamp specified, even if some entries from the most recent restore set
are deleted from the file. If not specified, the most recent restore set
will be kept, even if the time stamp is less than or equal to the time
stamp specified as input.

PRUNE RECOVERY HISTORY BEFORE :timestamp [WITH FORCE OPTION]

db2Prune - Prune History File

Appendix D. Additional APIs and Associated Data Structures 255

Usage notes:

Pruning the history file does not delete the actual backup or load files. The
user must manually delete these files to free up the space they consume on
storage media.

CAUTION:
If the latest full database backup is deleted from the media (in addition to
being pruned from the history file), the user must ensure that all table
spaces, including the catalog table space and the user table spaces, are
backed up. Failure to do so may result in a database that cannot be
recovered, or the loss of some portion of the user data in the database.

Related reference:

v “db2HistoryUpdate - Update History File” on page 250
v “db2HistoryOpenScan - Open History File Scan” on page 245
v “db2HistoryGetEntry - Get Next History File Entry” on page 242
v “db2HistoryCloseScan - Close History File Scan” on page 241
v “SQLCA” in the Administrative API Reference

Related samples:

v “dbrecov.sqc -- How to recover a database (C)”
v “dbrecov.sqC -- How to recover a database (C++)”

db2ReadLogNoConn - Read Log Without a Database Connection

Extract log records from the DB2 UDB database logs and query the Log
Manager for current log state information. Prior to using this API, use
db2ReadLogNoConnInit to allocate the memory that is passed as an input
parameter to this API. After using this API, use db2ReadLogNoConnTerm to
deallocate the memory.

Authorization:

One of the following:
v sysadm

v dbadm

Required connection:

Database

API include file:

db2Prune - Prune History File

256 Data Recovery and High Availability Guide and Reference

db2ApiDf.h

C API syntax:

API parameters:

version
Input. Specifies the version and release level of the structure passed as
the second parameter pDB2ReadLogNoConnStruct.

pParamStruct
Input. A pointer to the db2ReadLogNoConnStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

iCallerAction
Input. Specifies the action to be performed. Valid values are:

/* File: db2ApiDf.h */
/* API: db2ReadLogNoConn */
/* ... */
SQL_API_RC SQL_API_FN
db2ReadLogNoConn (

db2Uint32 versionNumber,
void *pDB2ReadLogNoConnStruct,
struct sqlca *pSqlca);

typedef SQL_STRUCTURE db2ReadLogNoConnStruct
{

db2Uint32 iCallerAction;
SQLU_LSN *piStartLSN;
SQLU_LSN *piEndLSN;
char *poLogBuffer;
db2Uint32 iLogBufferSize;
char *piReadLogMemPtr;
db2ReadLogNoConnInfoStruct *poReadLogInfo;

} db2ReadLogNoConnStruct;

typedef SQL_STRUCTURE db2ReadLogNoConnInfoStruct
{

SQLU_LSN firstAvailableLSN;
SQLU_LSN firstReadLSN;
SQLU_LSN nextStartLSN;
db2Uint32 logRecsWritten;
db2Uint32 logBytesWritten;
db2Uint32 lastLogFullyRead;
db2TimeOfLog currentTimeValue;

} db2ReadLogNoConnInfoStruct;

/* ... */

db2ReadLogNoConn - Read Log Without a Database Connection

Appendix D. Additional APIs and Associated Data Structures 257

DB2READLOG_READ
Read the database log from the starting log sequence to the
ending log sequence number and return log records within
this range.

DB2READLOG_READ_SINGLE
Read a single log record (propagatable or not) identified by
the starting log sequence number.

DB2READLOG_QUERY
Query the database log. Results of the query will be sent back
via the db2ReadLogNoConnInfoStruct structure.

piStartLSN
Input. The starting log sequence number specifies the starting relative
byte address for the reading of the log. This value must be the start of
an actual log record.

piEndLSN
Input. The ending log sequence number specifies the ending relative
byte address for the reading of the log. This value must be greater
than piStartLsn, and does not need to be the end of an actual log
record.

poLogBuffer
Output. The buffer where all the propagatable log records read within
the specified range are stored sequentially. This buffer must be large
enough to hold a single log record. As a guideline, this buffer should
be a minimum of 32 bytes. Its maximum size is dependent on the size
of the requested range. Each log record in the buffer is prefixed by a
six byte log sequence number (LSN), representing the LSN of the
following log record.

iLogBufferSize
Input. Specifies the size, in bytes, of the log buffer.

piReadLogMemPtr
Input. Block of memory of size iReadLogMemoryLimit that was
allocated in the initialization call. This memory contains persistent
data that the API requires at each invocation. This memory block
must not be reallocated or altered in any way by the caller.

poReadLogInfo
Output. A pointer to the db2ReadLogNoConnInfoStruct structure.

firstAvailableLSN
First available LSN in available logs.

firstReadLSN
First LSN read on this call.

db2ReadLogNoConn - Read Log Without a Database Connection

258 Data Recovery and High Availability Guide and Reference

nextStartLSN
Next readable LSN.

logRecsWritten
Number of log records written to the log buffer field, poLogBuffer.

logBytesWritten
Number of bytes written to the log buffer field, poLogBuffer.

lastLogFullyRead
Number indicating the last log file that was read to completion.

Usage notes:

The db2ReadLogNoConn API requires a memory block that must be allocated
using the db2ReadLogNoConnInit API. The memory block must be passed as
an input parameter to all subsequent db2ReadLogNoConn API calls, and must
not be altered.

When requesting a sequential read of log, the API requires a log sequence
number (LSN) range and the allocated memory . The API will return a
sequence of log records based on the filter option specified when initialized
and the LSN range. When requesting a query, the read log information
structure will contain a valid starting LSN, to be used on a read call. The
value used as the ending LSN on a read can be one of the following:
v A value greater than the caller-specified startLSN.
v FFFF FFFF FFFF which is interpreted by the asynchronous log reader as the

end of the available logs.

The propagatable log records read within the starting and ending LSN range
are returned in the log buffer. A log record does not contain its LSN, it is
contained in the buffer before the actual log record. Descriptions of the
various DB2 UDB log records returned by db2ReadLogNoConn can be found
in the DB2 UDB Log Records section.

After the initial read, in order to read the next sequential log record, use the
nextStartLSN value returned in db2ReadLogNoConnInfoStruct. Resubmit the
call, with this new starting LSN and a valid ending LSN and the next block of
records is then read. An sqlca code of SQLU_RLOG_READ_TO_CURRENT
means the log reader has read to the end of the available log files.

When the API will no longer be used, use db2ReadLogNoConnTerm to
terminate the memory.

Related reference:

v “db2ReadLogNoConnInit - Initialize Read Log Without a Database
Connection” on page 260

db2ReadLogNoConn - Read Log Without a Database Connection

Appendix D. Additional APIs and Associated Data Structures 259

v “db2ReadLogNoConnTerm - Terminate Read Log Without a Database
Connection” on page 262

db2ReadLogNoConnInit - Initialize Read Log Without a Database Connection

Allocates the memory to be used by db2ReadLogNoConn in order to extract
log records from the DB2 UDB database logs and query the Log Manager for
current log state information.

Required connection:

Database

API include file:

db2ApiDf.h

C API syntax:

API parameters:

version
Input. Specifies the version and release level of the structure passed as
the second parameter pDB2ReadLogNoConnInitStruct.

pParamStruct
Input. A pointer to the db2ReadLogNoConnInitStruct structure.

/* File: db2ApiDf.h */
/* API: db2ReadLogNoConnInit */
/* ... */
SQL_API_RC SQL_API_FN
db2ReadLogNoConnInit (

db2Uint32 versionNumber,
void * pDB2ReadLogNoConnInitStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ReadLogNoConnInitStruct
{

db2Uint32 iFilterOption;
char *piLogFilePath;
char *piOverflowLogPath;
db2Uint32 iRetrieveLogs;
char *piDatabaseName;
char *piNodeName;
db2Uint32 iReadLogMemoryLimit;
char **poReadLogMemPtr;

} db2ReadLogNoConnInitStruct;
/* ... */

db2ReadLogNoConn - Read Log Without a Database Connection

260 Data Recovery and High Availability Guide and Reference

pSqlca
Output. A pointer to the sqlca structure.

iFilterOption
Input. Specifies the level of log record filtering to be used when
reading the log records. Valid values are:

DB2READLOG_FILTER_OFF
Read all log records in the given LSN range.

DB2READLOG_FILTER_ON
Reads only log records in the given LSN range marked as
propagatable. This is the traditional behavior of the
asynchronous log read API.

piLogFilePath
Input. Path where the log files to be read are located.

piOverflowLogPath
Input. Alternate path where the log files to be read may be located.

iRetrieveLogs
Input. Option specifying if userexit should be invoked to retrieve log
files that cannot be found in either the log file path or the overflow
log path. Valid values are:

DB2READLOG_RETRIEVE_OFF
Userexit should not be invoked to retrieve missing log files.

DB2READLOG_RETRIEVE_LOGPATH
Userexit should be invoked to retrieve missing log files into
the specified log file path.

DB2READLOG_RETRIEVE_OVERFLOW
Userexit should be invoked to retrieve missing log files into
the specified overflow log path.

piDatabaseName
Input. Name of the database that owns the recovery logs being read.
This is required if the retrieve option above is specified.

piNodeName
Input. Name of the node that owns the recovery logs being read. This
is required if the retrieve option above is specified.

iReadLogMemoryLimit
Input. Maximum number of bytes that the API may allocate internally.

poReadLogMemPtr
Output. API-allocated block of memory of size iReadLogMemoryLimit.

db2ReadLogNoConnInit - Initialize Read Log Without a Database Connection

Appendix D. Additional APIs and Associated Data Structures 261

This memory contains persistent data that the API requires at each
invocation. This memory block must not be reallocated or altered in
any way by the caller.

Usage notes:

The memory initialized by db2ReadLogNoConnInit must not be altered.

When db2ReadLogNoConn will no longer be used, invoke
db2ReadLogNoConnTerm to deallocate the memory initialized by
db2ReadLogNoConnInit.

Related reference:

v “db2ReadLogNoConn - Read Log Without a Database Connection” on page
256

v “db2ReadLogNoConnTerm - Terminate Read Log Without a Database
Connection” on page 262

db2ReadLogNoConnTerm - Terminate Read Log Without a Database Connection

Deallocates the memory used by db2ReadLogNoConn, originally initialized
by db2ReadLogNoConnInit.

Authorization:

One of the following:
v sysadm

v dbadm

Required connection:

Database

API include file:

db2ApiDf.h

C API syntax:

db2ReadLogNoConnInit - Initialize Read Log Without a Database Connection

262 Data Recovery and High Availability Guide and Reference

API parameters:

version
Input. Specifies the version and release level of the structure passed as
the second parameter pDB2ReadLogNoConnTermStruct.

pParamStruct
Input. A pointer to the db2ReadLogNoConnTermStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

poReadLogMemPtr
Output. Pointer to the block of memory allocated in the initialization
call. This pointer will be freed and set to NULL.

Related reference:

v “db2ReadLogNoConn - Read Log Without a Database Connection” on page
256

v “db2ReadLogNoConnInit - Initialize Read Log Without a Database
Connection” on page 260

db2ReadLog - Asynchronous Read Log

Extract log records from the DB2 UDB database logs and the Log Manager for
current log state information. This API can only be used with recoverable
databases. A database is recoverable if it is configured with logretain set to
RECOVERY or userexit set to ON.

Authorization:

One of the following:
v sysadm

v dbadm

/* File: db2ApiDf.h */
/* API: db2ReadLogNoConnTerm */
/* ... */
SQL_API_RC SQL_API_FN
db2ReadLogNoConnTerm (

db2Uint32 versionNumber,
void * pDB2ReadLogNoConnTermStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ReadLogNoConnTermStruct
{

char **poReadLogMemPtr;
} db2ReadLogNoConnTermStruct;
/* ... */

db2ReadLogNoConnTerm - Terminate Read Log Without a Database Connection

Appendix D. Additional APIs and Associated Data Structures 263

Required connection:

Database

API include file:

db2ApiDf.h

C API syntax:

API parameters:

versionNumber
Input. Specifies the version and release level of the structure passed as
the second parameter, pDB2ReadLogStruct.

/* File: db2ApiDf.h */
/* API: db2ReadLog */
/* ... */
SQL_API_RC SQL_API_FN

db2ReadLog (
db2Uint32 versionNumber,
void *pDB2ReadLogStruct,
struct sqlca *pSqlca);

typedef SQL_STRUCTURE db2ReadLogStruct
{

db2Uint32 iCallerAction;
SQLU_LSN *piStartLSN;
SQLU_LSN *piEndLSN;
char *poLogBuffer;
db2Uint32 iLogBufferSize;
db2Uint32 iFilterOption;
db2ReadLogInfoStruct *poReadLogInfo;

typedef SQL_STRUCTURE db2ReadLogInfoStruct
{

SQLU_LSN initialLSN;
SQLU_LSN firstReadLSN;
SQLU_LSN nextStartLSN;
db2Uint32 logRecsWritten;
db2Uint32 logBytesWritten;
SQLU_LSN firstReusedLSN;
db2Uint32 timeOfLSNReuse;
db2TimeOfLog currentTimeValue;

} db2ReadLogInfoStruct;

typedef SQL_STRUCTURE db2TimeOfLog
{

db2Uint32 seconds;
db2Uint32 accuracy;

} db2TimeOfLog;
/* ... */

db2ReadLog - Asynchronous Read Log

264 Data Recovery and High Availability Guide and Reference

pDB2ReadLogStruct
Input. A pointer to the db2ReadLogStruct.

pSqlca
Output. A pointer to the sqlca structure.

iCallerAction
Input. Specifies the action to be performed.

DB2READLOG_READ
Read the database log from the starting log sequence to the
ending log sequence number and return log records within
this range.

DB2READLOG_READ_SINGLE
Read a single log record (propagatable or not) identified by
the starting log sequence number.

DB2READLOG_QUERY
Query the database log. Results of the query will be sent back
via the db2ReadLogInfoStruct structure.

piStartLsn
Input. The starting log sequence number specifies the starting relative
byte address for the reading of the log. This value must be the start of
an actual log record.

piEndLsn
Input. The ending log sequence number specifies the ending relative
byte address for the reading of the log. This value must be greater
than startLsn, and does not need to be the end of an actual log record.

poLogBuffer
Output. The buffer where all the propagatable log records read within
the specified range are stored sequentially. This buffer must be large
enough to hold a single log record. As a guideline, this buffer should
be a minimum of 32 bytes. Its maximum size is dependent on the size
of the requested range. Each log record in the buffer is prefixed by a
six byte log sequence number (LSN), representing the LSN of the
following log record.

iLogBufferSize
Input. Specifies the size, in bytes, of the log buffer.

iFilterOption
Input. Specifies the level of log record filtering to be used when
reading the log records. Valid values are:

DB2READLOG_FILTER_OFF
Read all log records in the given LSN range.

db2ReadLog - Asynchronous Read Log

Appendix D. Additional APIs and Associated Data Structures 265

DB2READLOG_FILTER_ON
Reads only log records in the given LSN range marked as
propagatable. This is the traditional behaviors of the
asynchronous log read API.

poReadLogInfo
Output. A structure detailing information regarding the call and the
database log.

Usage notes:

If the requested action is to read the log, the caller will provide a log sequence
number range and a buffer to hold the log records. This API reads the log
sequentially, bounded by the requested LSN range, and returns log records
associated with tables having the DATA CAPTURE option CHANGES, and a
db2ReadLogInfoStruct structure with the current active log information. If the
requested action is query, the API returns an db2ReadLogInfoStruct structure
with the current active log information.

To use the Asynchronous Log Reader, first query the database log for a valid
starting LSN. Following the query call, the read log information structure
(db2ReadLogInfoStruct) will contain a valid starting LSN (in the initialLSN
member), to be used on a read call. The value used as the ending LSN on a
read can be one of the following:
v A value greater than initialLSN
v FFFF FFFF FFFF, which is interpreted by the asynchronous log reader as the

end of the current log.

The propagatable log records read within the starting and ending LSN range
are returned in the log buffer. A log record does not contain its LSN; it is
contained in the buffer before the actual log record. Descriptions of the
various DB2 log records returned by db2ReadLog the DB2 UDB Log Records
section.

To read the next sequential log record after the initial read, use the
nextStartLSN field returned in the db2ReadLogStruct structure. Resubmit the
call, with this new starting LSN and a valid ending LSN. The next block of
records is then read. An sqlca code of SQLU_RLOG_READ_TO_CURRENT
means that the log reader has read to the end of the current active log.

Related reference:

v “SQLCA” in the Administrative API Reference

Related samples:

v “dbrecov.sqc -- How to recover a database (C)”

db2ReadLog - Asynchronous Read Log

266 Data Recovery and High Availability Guide and Reference

v “dbrecov.sqC -- How to recover a database (C++)”

db2HistData

This structure is used to return information after a call to db2HistoryGetEntry.

Table 2. Fields in the db2HistData Structure

Field Name Data Type Description

ioHistDataID char(8) An 8-byte structure identifier and
“eye-catcher” for storage dumps. The only
valid value is “SQLUHINF”. No symbolic
definition for this string exists.

oObjectPart db2Char The first 14 characters are a time stamp with
format yyyymmddhhnnss, indicating when the
operation was begun. The next 3 characters
are a sequence number. Each backup
operation can result in multiple entries in this
file when the backup image is saved in
multiple files or on multiple tapes. The
sequence number allows multiple locations to
be specified. Restore and load operations have
only a single entry in this file, which
corresponds to sequence number ’001’ of the
corresponding backup. The time stamp,
combined with the sequence number, must be
unique.

oEndTime db2Char A time stamp with format yyyymmddhhnnss,
indicating when the operation was completed.

oFirstLog db2Char The earliest log file ID (ranging from S0000000
to S9999999):

v Required to apply rollforward recovery for
an online backup

v Required to apply rollforward recovery for
an offline backup

v Applied after restoring a full database or
table space level backup that was current
when the load started.

oLastLog db2Char The latest log file ID (ranging from S0000000
to S9999999):

v Required to apply rollforward recovery for
an online backup

v Required to apply rollforward recovery to
the current point in time for an offline
backup

v Applied after restoring a full database or
table space level backup that was current
when the load operation finished (will be
the same as oFirstLog if roll forward
recovery is not applied).

db2ReadLog - Asynchronous Read Log

Appendix D. Additional APIs and Associated Data Structures 267

Table 2. Fields in the db2HistData Structure (continued)

Field Name Data Type Description

oID db2Char Unique backup or table identifier.

oTableQualifier db2Char Table qualifier.

oTableName db2Char Table name.

oLocation db2Char For backups and load copies, this field
indicates where the data has been saved. For
operations that require multiple entries in the
file, the sequence number defined by
oObjectPart identifies which part of the backup
is found in the specified location. For restore
and load operations, the location always
identifies where the first part of the data
restored or loaded (corresponding to sequence
’001’ for multi-part backups) has been saved.
The data in oLocation is interpreted differently,
depending on oDeviceType:

v For disk or diskette (D or K), a fully
qualified file name

v For tape (T), a volume label

v For TSM (A), the server name

v For user exit or other (U or O), free form
text.

oComment db2Char Free form text comment.

oCommandText db2Char Command text, or DDL.

oLastLSN SQLU_LSN Last log sequence number.

oEID Structure Unique entry identifier.

poEventSQLCA Structure Result sqlca of the recorded event.

poTablespace db2Char A list of table space names.

ioNumTablespaces db2Uint32 Number of entries in the poTablespace list. Each
table space backup contains one or more table
spaces. Each table space restore operation
replaces one or more table spaces. If this field
is not zero (indicating a table space level
backup or restore), the next lines in this file
contain the name of the table space backed up
or restored, represented by an 18-character
string. One table space name appears on each
line.

oOperation char See Table 3 on page 269.

oObject char Granularity of the operation: D for full
database, P for table space, and T for table.

oOptype char See Table 4 on page 270.

db2HistData

268 Data Recovery and High Availability Guide and Reference

Table 2. Fields in the db2HistData Structure (continued)

Field Name Data Type Description

oStatus char Entry status: A for action, D for deleted (future
use), E for expired, I for inactive, N for not yet
committed, Y for committed or active, a for
active backup, but some datalink servers have
not yet completed the backup, and i for
inactive backup, but some datalink servers
have not yet completed the backup.

oDeviceType char Device type. This field determines how the
oLocation field is interpreted: A for TSM, C for
client, D for disk, K for diskette, L for local, O
for other (for other vendor device support), P
for pipe, Q for cursor, S for server, T for tape,
and U for user exit.

Table 3. Valid oOperation Values in the db2HistData Structure

Value Description C Definition COBOL/FORTRAN Definition

A add table space DB2HISTORY_OP_ADD_
TABLESPACE

DB2HIST_OP_ADD_
TABLESPACE

B backup DB2HISTORY_OP_BACKUP DB2HIST_OP_BACKUP

C load copy DB2HISTORY_OP_LOAD_COPY DB2HIST_OP_LOAD_COPY

D dropped table DB2HISTORY_OP_DROPPED_
TABLE

DB2HIST_OP_DROPPED_TABLE

F rollforward DB2HISTORY_OP_ROLLFWD DB2HIST_OP_ROLLFWD

G reorganize table DB2HISTORY_OP_REORG DB2HIST_OP_REORG

L load DB2HISTORY_OP_LOAD DB2HIST_OP_LOAD

N rename table space DB2HISTORY_OP_REN_
TABLESPACE

DB2HIST_OP_REN_
TABLESPACE

O drop table space DB2HISTORY_OP_DROP_
TABLESPACE

DB2HIST_OP_DROP_
TABLESPACE

Q quiesce DB2HISTORY_OP_QUIESCE DB2HIST_OP_QUIESCE

R restore DB2HISTORY_OP_RESTORE DB2HIST_OP_RESTORE

T alter table space DB2HISTORY_OP_ALT_
TABLESPACE

DB2HIST_OP_ALT_TBS

U unload DB2HISTORY_OP_UNLOAD DB2HIST_OP_UNLOAD

db2HistData

Appendix D. Additional APIs and Associated Data Structures 269

Table 4. Valid oOptype Values in the db2HistData Structure

oOperation oOptype Description C/COBOL/FORTRAN Definition

B F offline DB2HISTORY_OPTYPE_OFFLINE

N online DB2HISTORY_OPTYPE_ONLINE

I incremental
offline

DB2HISTORY_OPTYPE_INCR_
OFFLINE

O incremental
online

DB2HISTORY_OPTYPE_INCR_
ONLINE

D delta offline DB2HISTORY_OPTYPE_DELTA_
OFFLINE

E delta online DB2HISTORY_OPTYPE_DELTA_
ONLINE

F E end of logs DB2HISTORY_OPTYPE_EOL

P point in time DB2HISTORY_OPTYPE_PIT

G F offline DB2HISTORY_OPTYPE_OFFLINE

N online DB2HISTORY_OPTYPE_ONLINE

L I insert DB2HISTORY_OPTYPE_INSERT

R replace DB2HISTORY_OPTYPE_REPLACE

Q S quiesce share DB2HISTORY_OPTYPE_SHARE

U quiesce update DB2HISTORY_OPTYPE_UPDATE

X quiesce exclusive DB2HISTORY_OPTYPE_EXCL

Z quiesce reset DB2HISTORY_OPTYPE_RESET

R F offline DB2HISTORY_OPTYPE_OFFLINE

N online DB2HISTORY_OPTYPE_ONLINE

I incremental
offline

DB2HISTORY_OPTYPE_INCR_
OFFLINE

O incremental
online

DB2HISTORY_OPTYPE_INCR_
ONLINE

T C add containers DB2HISTORY_OPTYPE_ADD_CONT

R rebalance DB2HISTORY_OPTYPE_REB

Table 5. Fields in the db2Char Structure

Field Name Data Type Description

pioData char A pointer to a character data buffer. If NULL,
no data will be returned.

iLength db2Uint32 Input. The size of the pioData buffer.

oLength db2Uint32 Output. The number of valid characters of
data in the pioData buffer.

db2HistData

270 Data Recovery and High Availability Guide and Reference

Table 6. Fields in the db2HistoryEID Structure

Field Name Data Type Description

ioNode SQL_PDB_NODE_TYPE Node number.

ioHID db2Uint32 Local history file entry ID.

db2HistData

Appendix D. Additional APIs and Associated Data Structures 271

Language syntax:

C Structure

Related reference:

v “db2HistoryGetEntry - Get Next History File Entry” on page 242
v “SQLCA” in the Administrative API Reference

/* File: db2ApiDf.h */
/* ... */
typedef SQL_STRUCTURE db2HistoryData
{

char ioHistDataID[8];
db2Char oObjectPart;
db2Char oEndTime;
db2Char oFirstLog;
db2Char oLastLog;
db2Char oID;
db2Char oTableQualifier;
db2Char oTableName;
db2Char oLocation;
db2Char oComment;
db2Char oCommandText;
SQLU_LSN oLastLSN;
db2HistoryEID oEID;
struct sqlca * poEventSQLCA;
db2Char * poTablespace;
db2Uint32 ioNumTablespaces;
char oOperation;
char oObject;
char oOptype;
char oStatus;
char oDeviceType

} db2HistoryData;

typedef SQL_STRUCTURE db2Char
{

char * pioData;
db2Uint32 ioLength

} db2Char;

typedef SQL_STRUCTURE db2HistoryEID
{

SQL_PDB_NODE_TYPE ioNode;
db2Uint32 ioHID

} db2HistoryEID;
/* ... */

db2HistData

272 Data Recovery and High Availability Guide and Reference

SQLU-LSN

This union, used by the db2ReadLog API, contains the definition of the log
sequence number. A log sequence number (LSN) represents a relative byte
address within the database log. All log records are identified by this number.
It represents the log record’s byte offset from the beginning of the database
log.

Table 7. Fields in the SQLU-LSN Union

Field Name Data Type Description

lsnChar Array of UNSIGNED
CHAR

Specifies the 6-member character array log
sequence number.

lsnWord Array of UNSIGNED
SHORT

Specifies the 3-member short array log
sequence number.

Language syntax:

C Structure

Related reference:

v “db2ReadLog - Asynchronous Read Log” on page 263

typedef union SQLU_LSN
{
unsigned char lsnChar [6] ;
unsigned short lsnWord [3] ;
} SQLU_LSN;

SQLU-LSN

Appendix D. Additional APIs and Associated Data Structures 273

SQLU-LSN

274 Data Recovery and High Availability Guide and Reference

Appendix E. Recovery Sample Program

Sample Program with Embedded SQL (dbrecov.sqc)

The following sample program shows how to use DB2 backup and restore
APIs to:
v Back up a database
v Restore the database
v Rollforward recover the database

Note: The dbrecov sample files can be found in sqllib/samples/c and
sqllib/samples/cpp directory.

/**
** Licensed Materials - Property of IBM
** Governed under the terms of the IBM Public License
**
** (C) COPYRIGHT International Business Machines Corp. 2002
** All Rights Reserved.
**
** US Government Users Restricted Rights - Use, duplication or
** disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

**
** SOURCE FILE NAME: dbrecov.sqc
**
** SAMPLE: How to recover a database
**
** DB2 API USED:
** db2HistoryCloseScan -- Close Recovery History File Scan
** db2HistoryGetEntry -- Get Next Recovery History File Entry
** db2HistoryOpenScan -- Open Recovery History File Scan
** db2HistoryUpdate -- Update Recovery History File
** db2Prune -- Prune Recovery History File
** db2CfgGet -- Get Configuration
** db2CfgSet -- Set Configuration
** sqlbmtsq -- Tablespace Query
** sqlbstsc -- Set Tablespace Containers
** sqlbtcq -- Tablespace Container Query
** sqlecrea -- Create Database
** sqledrpd -- Drop Database
** sqlefmem -- Free Memory
** db2Backup -- Backup Database
** db2Restore -- Restore Database
** db2ReadLog -- Asynchronous Read Log
** db2ReadLogNoConn -- No Db Connection Read Log
** db2Rollforward -- Rollforward Database
**
** SQL STATEMENTS USED:

© Copyright IBM Corp. 2001, 2002 275

** ALTER TABLE
** COMMIT
** DELETE
** INSERT
** ROLLBACK
**
** OUTPUT FILE: dbrecov.out (available in the online documentation)
**
** For detailed information about database backup and recovery, see the
** "Data Recovery and High Availability Guide and Reference". This manual
** will help you to determine which database and table space recovery methods
** are best suited to your business environment.
**
** For more information about the sample programs, see the README file.
**
** For more information about programming in C, see the
** "Programming in C and C++" section of the "Application Development Guide".
**
** For more information about building C applications, see the
** section for your compiler in the "Building Applications" chapter
** for your platform in the "Application Development Guide".
**
** For more information about SQL, see the "SQL Reference".
**
** For more information on DB2 APIs, see the Administrative API Reference.
**
** For the latest information on programming, compiling, and running DB2
** applications, refer to the DB2 application development website at
** http://www.software.ibm.com/data/db2/udb/ad
**/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqlenv.h>
#include <sqlutil.h>
#include <db2ApiDf.h>
#include "utilemb.h"

int DbRecoveryHistoryFilePrune(char *, char *, char *);
int DbBackupAndRestore(char *, char *, char *, char *, char *);
int DbBackupAndRedirectedRestore(char *, char *, char *, char *, char *);
int DbBackupRestoreAndRollforward(char *, char *, char *, char *, char *);
int DbLogRecordsForCurrentConnectionRead(char *, char *, char *, char *);
int DbRecoveryHistoryFileRead(char *);
int DbFirstRecoveryHistoryFileEntryUpdate(char *, char *, char *);
int DbReadLogRecordsNoConn(char *);

/* support function called by main() */
int ServerWorkingPathGet(char *, char *);

/* support function called by DbBackupAndRedirectedRestore() */
int InaccessableContainersRedefine(char *);

/* support function called by DbBackupAndRedirectedRestore() and
DbBackupRestoreAndRollforward() */

Sample Program with Embedded SQL (dbrecov.sqc)

276 Data Recovery and High Availability Guide and Reference

int DbDrop(char *);

/* support function called by DbLogRecordsForCurrentConnectionRead() */
int LogBufferDisplay(char *, sqluint32);
int LogRecordDisplay(char *, sqluint32, sqluint16, sqluint16);
int SimpleLogRecordDisplay(sqluint16, sqluint16, char *, sqluint32);
int ComplexLogRecordDisplay(sqluint16, sqluint16, char *, sqluint32,

sqluint8, char *, sqluint32);
int LogSubRecordDisplay(char *, sqluint16);
int UserDataDisplay(char *, sqluint16);

/* support functions called by DbRecoveryHistoryFileRead() and
DbFirstRecoveryHistoryFileEntryUpdate() */

int HistoryEntryDataFieldsAlloc(struct db2HistoryData *);
int HistoryEntryDisplay(struct db2HistoryData);
int HistoryEntryDataFieldsFree(struct db2HistoryData *);

/* DbCreate will create a new database on the server with the server’s
code page.
Use this function only if you want to restore a remote database.
This support function is being called by DbBackupAndRedirectedRestore()
and DbBackupRestoreAndRollforward(). */

int DbCreate(char *, char *);

int main(int argc, char *argv[])
{

int rc = 0;
char nodeName[SQL_INSTNAME_SZ + 1];
char serverWorkingPath[SQL_PATH_SZ + 1];
char restoredDbAlias[SQL_ALIAS_SZ + 1];
char redirectedRestoredDbAlias[SQL_ALIAS_SZ + 1];
char rolledForwardDbAlias[SQL_ALIAS_SZ + 1];
sqluint16 savedLogRetainValue;
char dbAlias[SQL_ALIAS_SZ + 1];
char user[USERID_SZ + 1];
char pswd[PSWD_SZ + 1];

/* check the command line arguments */
rc = CmdLineArgsCheck3(argc, argv, dbAlias, nodeName, user, pswd);
if (rc != 0)
{

return rc;
}

printf("\nTHIS SAMPLE SHOWS HOW TO RECOVER A DATABASE.\n");

strcpy(restoredDbAlias, dbAlias);
strcpy(redirectedRestoredDbAlias, "RRDB");
strcpy(rolledForwardDbAlias, "RFDB");

/* attach to a local or remote instance */
rc = InstanceAttach(nodeName, user, pswd);
if (rc != 0)
{

return rc;

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 277

}

printf("\nUSE THE DB2 API:\n");
printf(" db2CfgGet -- Get Configuration\n");
printf("TO GET THE DATABASE CONFIGURATION AND DETERMINE\n");
printf("THE SERVER WORKING PATH.\n");

/* get the server working path */
rc = ServerWorkingPathGet(dbAlias, serverWorkingPath);
if (rc != 0)
{

return rc;
}

printf("\nNOTE: Backup images will be created on the server\n");
printf(" in the directory %s,\n", serverWorkingPath);
printf(" and will not be deleted by the program.\n");

/* call the sample functions */
rc = DbRecoveryHistoryFilePrune(dbAlias, user, pswd);

rc = DbBackupAndRestore(dbAlias,
restoredDbAlias,
user,
pswd,
serverWorkingPath);

rc = DbBackupAndRedirectedRestore(dbAlias,
redirectedRestoredDbAlias,
user,
pswd,
serverWorkingPath);

rc = DbBackupRestoreAndRollforward(dbAlias,
rolledForwardDbAlias,
user,
pswd,
serverWorkingPath);

rc = DbLogRecordsForCurrentConnectionRead(dbAlias,
user,
pswd,
serverWorkingPath);

rc = DbRecoveryHistoryFileRead(dbAlias);

rc = DbFirstRecoveryHistoryFileEntryUpdate(dbAlias, user, pswd);

rc = DbRecoveryHistoryFilePrune(dbAlias, user, pswd);

/* detach from the local or remote instance */
rc = InstanceDetach(nodeName);
if (rc != 0)
{

return rc;

Sample Program with Embedded SQL (dbrecov.sqc)

278 Data Recovery and High Availability Guide and Reference

}

rc = DbReadLogRecordsNoConn(dbAlias);

return 0;
} /* end main */

int ServerWorkingPathGet(char dbAlias[], char serverWorkingPath[])
{

int rc = 0;
struct sqlca sqlca;
char serverLogPath[SQL_PATH_SZ + 1];
db2CfgParam cfgParameters[1];
db2Cfg cfgStruct;
int len;

/* initialize cfgParameters */
/* SQLF_DBTN_LOGPATH is a token of the non-updatable database configuration

parameter ’logpath’; it is used to get the server log path */
cfgParameters[0].flags = 0;
cfgParameters[0].token = SQLF_DBTN_LOGPATH;
cfgParameters[0].ptrvalue =

(char *)malloc((SQL_PATH_SZ + 1) * sizeof(char));

/* initialize cfgStruct */
cfgStruct.numItems = 1;
cfgStruct.paramArray = cfgParameters;
cfgStruct.flags = db2CfgDatabase;
cfgStruct.dbname = dbAlias;

/* get database configuration */
/* the API db2CfgGet returns the values of individual entries in a

database configuration file */
db2CfgGet(db2Version810, (void *)&cfgStruct, &sqlca);
DB2_API_CHECK("server log path -- get");

strcpy(serverLogPath, cfgParameters[0].ptrvalue);
free(cfgParameters[0].ptrvalue);

/* choose the server working path; if, for example, serverLogPath =
"C:\DB2\NODE0001\....", we’ll keep "C:\DB2" for the serverWorkingPath
variable; backup images created in this sample will be placed under
the ’serverWorkingPath’ directory */

len = (int)(strstr(serverLogPath, "NODE") - serverLogPath - 1);
memcpy(serverWorkingPath, serverLogPath, len);
serverWorkingPath[len] = ’\0’;

return 0;
} /* ServerWorkingPathGet */

int DbCreate(char existingDbAlias[], char newDbAlias[])
{

struct sqlca sqlca;
char dbName[SQL_DBNAME_SZ + 1];
char dbLocalAlias[SQL_ALIAS_SZ + 1];

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 279

char dbPath[SQL_PATH_SZ + 1];
struct sqledbdesc dbDescriptor;
struct sqledbcountryinfo countryInfo;
db2CfgParam cfgParameters[2];
db2Cfg cfgStruct;

printf("\n Create ’%s’ empty database with the same code set as ’%s’
database.\n", newDbAlias, existingDbAlias);

/* initialize cfgParameters */
cfgParameters[0].flags = 0;
cfgParameters[0].token = SQLF_DBTN_TERRITORY;
cfgParameters[0].ptrvalue = (char *)malloc(10 * sizeof(char));
memset(cfgParameters[0].ptrvalue, ’\0’, 10);
cfgParameters[1].flags = 0;
cfgParameters[1].token = SQLF_DBTN_CODESET;
cfgParameters[1].ptrvalue = (char *)malloc(20 * sizeof(char));
memset(cfgParameters[1].ptrvalue, ’\0’, 20);

/* initialize cfgStruct */
cfgStruct.numItems = 2;
cfgStruct.paramArray = cfgParameters;
cfgStruct.flags = db2CfgDatabase;
cfgStruct.dbname = existingDbAlias;

/* get database configuration */
db2CfgGet(db2Version810, (void *)&cfgStruct, &sqlca);
DB2_API_CHECK("server log path -- get");

/* create a new database */
strcpy(dbName, newDbAlias);
strcpy(dbLocalAlias, newDbAlias);
strcpy(dbPath, "");

strcpy(dbDescriptor.sqldbdid, SQLE_DBDESC_2);
dbDescriptor.sqldbccp = 0;
dbDescriptor.sqldbcss = SQL_CS_NONE;

strcpy(dbDescriptor.sqldbcmt, "");
dbDescriptor.sqldbsgp = 0;
dbDescriptor.sqldbnsg = 10;
dbDescriptor.sqltsext = -1;
dbDescriptor.sqlcatts = NULL;
dbDescriptor.sqlusrts = NULL;
dbDescriptor.sqltmpts = NULL;

strcpy(countryInfo.sqldbcodeset, (char *)cfgParameters[0].ptrvalue);
strcpy(countryInfo.sqldblocale, (char *)cfgParameters[1].ptrvalue);

/* create database */
sqlecrea(dbName,

dbLocalAlias,
dbPath,
&dbDescriptor,
&countryInfo,

Sample Program with Embedded SQL (dbrecov.sqc)

280 Data Recovery and High Availability Guide and Reference

’\0’,
NULL,
&sqlca);

DB2_API_CHECK("Database -- Create");

/* free the allocated memory */
free(cfgParameters[0].ptrvalue);
free(cfgParameters[1].ptrvalue);

return 0;
} /* DbCreate */

int DbDrop(char dbAlias[])
{

struct sqlca sqlca;

printf("\n Drop the ’%s’ database.\n", dbAlias);

/* drop and uncatalog the database */
sqledrpd(dbAlias, &sqlca);
DB2_API_CHECK("Database -- Drop");

return 0;
} /* DbDrop */

int DbBackupAndRestore(char dbAlias[],
char restoredDbAlias[],
char user[],
char pswd[],
char serverWorkingPath[])

{
int rc = 0;
struct sqlca sqlca;
db2CfgParam cfgParameters[1];
db2Cfg cfgStruct;
unsigned short logretain;
char restoreTimestamp[SQLU_TIME_STAMP_LEN + 1];

db2BackupStruct backupStruct;
db2TablespaceStruct tablespaceStruct;
db2MediaListStruct mediaListStruct;
db2Uint32 backupImageSize;
db2RestoreStruct restoreStruct;
db2TablespaceStruct rtablespaceStruct;
db2MediaListStruct rmediaListStruct;

printf("\n**************************************\n");
printf("*** BACK UP AND RESTORE A DATABASE ***\n");
printf("**************************************\n");
printf("\nUSE THE DB2 APIs:\n");
printf(" db2CfgSet -- Set Configuration\n");
printf(" db2Backup -- Backup Database\n");
printf(" db2Restore -- Restore Database\n");
printf("TO BACK UP AND RESTORE A DATABASE.\n");

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 281

printf("\n Update \’%s\’ database configuration:\n", dbAlias);
printf(" - Disable the database configuration parameter LOGRETAIN\n");
printf(" i.e., set LOGRETAIN = OFF/NO\n");

/* initialize cfgParameters */
/* SQLF_DBTN_LOG_RETAIN is a token of the updatable database configuration

parameter ’logretain’; it is used to update the database configuration
file */

cfgParameters[0].flags = 0;
cfgParameters[0].token = SQLF_DBTN_LOG_RETAIN;
cfgParameters[0].ptrvalue = (char *)&logretain;

/* disable the database configuration parameter ’logretain’ */
logretain = SQLF_LOGRETAIN_DISABLE;

/* initialize cfgStruct */
cfgStruct.numItems = 1;
cfgStruct.paramArray = cfgParameters;
cfgStruct.flags = db2CfgDatabase | db2CfgDelayed;
cfgStruct.dbname = dbAlias;

/* set database configuration */
db2CfgSet(db2Version810, (void *)&cfgStruct, &sqlca);
DB2_API_CHECK("Db Log Retain -- Disable");

/*******************************/
/* BACK UP THE DATABASE */
/*******************************/
printf("\n Backing up the ’%s’ database...\n", dbAlias);

tablespaceStruct.tablespaces = NULL;
tablespaceStruct.numTablespaces = 0;

mediaListStruct.locations = &serverWorkingPath;
mediaListStruct.numLocations = 1;
mediaListStruct.locationType = SQLU_LOCAL_MEDIA;

backupStruct.piDBAlias = dbAlias;
backupStruct.piTablespaceList = &tablespaceStruct;
backupStruct.piMediaList = &mediaListStruct;
backupStruct.piUsername = user;
backupStruct.piPassword = pswd;
backupStruct.piVendorOptions = NULL;
backupStruct.iVendorOptionsSize = 0;
backupStruct.iCallerAction = DB2BACKUP_BACKUP;
backupStruct.iBufferSize = 16; /* 16 x 4KB */
backupStruct.iNumBuffers = 1;
backupStruct.iParallelism =1;
backupStruct.iOptions = DB2BACKUP_OFFLINE | DB2BACKUP_DB;

/* The API db2Backup creates a backup copy of a database.
This API automatically establishes a connection to the specified database.
(This API can also be used to create a backup copy of a table space). */

db2Backup (db2Version810, &backupStruct, &sqlca);

Sample Program with Embedded SQL (dbrecov.sqc)

282 Data Recovery and High Availability Guide and Reference

DB2_API_CHECK("Database -- Backup");

while (sqlca.sqlcode != 0)
{

/* continue the backup operation */

/* depending on the sqlca.sqlcode value, user action may be */
/* required, such as mounting a new tape */

printf("\n Continuing the backup operation...\n");

backupStruct.iCallerAction = DB2BACKUP_CONTINUE;

db2Backup (db2Version810, &backupStruct, &sqlca);

DB2_API_CHECK("Database -- Backup");
}

printf(" Backup finished.\n");
printf(" - backup image size : %d MB\n", backupStruct.oBackupSize);
printf(" - backup image path : %s\n", mediaListStruct.locations[0]);

printf(" - backup image time stamp: %s\n", backupStruct.oTimestamp);

/******************************/
/* RESTORE THE DATABASE */
/******************************/

strcpy(restoreTimestamp, backupStruct.oTimestamp);

printf("\n Restoring a database ...\n");
printf(" - source image alias : %s\n", dbAlias);
printf(" - source image time stamp: %s\n", restoreTimestamp);
printf(" - target database : %s\n", restoredDbAlias);

rtablespaceStruct.tablespaces = NULL;
rtablespaceStruct.numTablespaces = 0;

rmediaListStruct.locations = &serverWorkingPath;
rmediaListStruct.numLocations = 1;
rmediaListStruct.locationType = SQLU_LOCAL_MEDIA;

restoreStruct.piSourceDBAlias = dbAlias;
restoreStruct.piTargetDBAlias = restoredDbAlias;

restoreStruct.piTimestamp = restoreTimestamp;
restoreStruct.piTargetDBPath = NULL;
restoreStruct.piReportFile = NULL;
restoreStruct.piTablespaceList = &rtablespaceStruct;
restoreStruct.piMediaList = &rmediaListStruct;
restoreStruct.piUsername = user;
restoreStruct.piPassword = pswd;
restoreStruct.piNewLogPath = NULL;
restoreStruct.piVendorOptions = NULL;

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 283

restoreStruct.iVendorOptionsSize = 0;
restoreStruct.iParallelism = 1;
restoreStruct.iBufferSize = 1024; /* 1024 x 4KB */;
restoreStruct.iNumBuffers = 1;
restoreStruct.iCallerAction = DB2RESTORE_RESTORE;
restoreStruct.iOptions = DB2RESTORE_OFFLINE | DB2RESTORE_DB |
DB2RESTORE_NODATALINK | DB2RESTORE_NOROLLFWD;

/* The API db2Restore is used to restore a database that has been backed
up using the API db2Backup. */

db2Restore (db2Version810, &restoreStruct, &sqlca);

EXPECTED_WARN_CHECK("database restore -- start");

while (sqlca.sqlcode != 0)
{

/* continue the restore operation */
printf("\n Continuing the restore operation...\n");

/* depending on the sqlca.sqlcode value, user action may be
required, such as mounting a new tape */

restoreStruct.iCallerAction = DB2RESTORE_CONTINUE;

/* restore the database */
db2Restore (db2Version810, &restoreStruct, &sqlca);

DB2_API_CHECK("database restore -- continue");
}

printf("\n Restore finished.\n");

return 0;
} /* DbBackupAndRestore */

int DbBackupAndRedirectedRestore(char dbAlias[],
char restoredDbAlias[],
char user[],
char pswd[],
char serverWorkingPath[])

{
int rc = 0;
struct sqlca sqlca;
db2CfgParam cfgParameters[1];
db2Cfg cfgStruct;
unsigned short logretain;

char restoreTimestamp[SQLU_TIME_STAMP_LEN + 1];

db2BackupStruct backupStruct;
db2TablespaceStruct tablespaceStruct;
db2MediaListStruct mediaListStruct;
db2Uint32 backupImageSize;
db2RestoreStruct restoreStruct;
db2TablespaceStruct rtablespaceStruct;

Sample Program with Embedded SQL (dbrecov.sqc)

284 Data Recovery and High Availability Guide and Reference

db2MediaListStruct rmediaListStruct;

printf("\n**************************\n");
printf("*** REDIRECTED RESTORE ***\n");
printf("**************************\n");
printf("\nUSE THE DB2 APIs:\n");
printf(" db2CfgSet -- Upate Configuration\n");
printf(" db2Backup -- Backup Database\n");
printf(" sqlecrea -- Create Database\n");
printf(" db2Restore -- Restore Database\n");
printf(" sqlbmtsq -- Tablespace Query\n");
printf(" sqlbtcq -- Tablespace Container Query\n");
printf(" sqlbstsc -- Set Tablespace Containers\n");
printf(" sqlefmem -- Free Memory\n");
printf(" sqledrpd -- Drop Database\n");
printf("TO BACK UP AND DO A REDIRECTED RESTORE OF A DATABASE.\n");

printf("\n Update \’%s\’ database configuration:\n", dbAlias);
printf(" - Disable the database configuration parameter LOGRETAIN \n");
printf(" i.e., set LOGRETAIN = OFF/NO\n");

/* initialize cfgParameters */
/* SQLF_DBTN_LOG_RETAIN is a token of the updatable database configuration

parameter ’logretain’; it is used to update the database configuration
file */

cfgParameters[0].flags = 0;
cfgParameters[0].token = SQLF_DBTN_LOG_RETAIN;
cfgParameters[0].ptrvalue = (char *)&logretain;

/* disable the database configuration parameter ’logretain’ */
logretain = SQLF_LOGRETAIN_DISABLE;

/* initialize cfgStruct */
cfgStruct.numItems = 1;
cfgStruct.paramArray = cfgParameters;
cfgStruct.flags = db2CfgDatabase | db2CfgDelayed;
cfgStruct.dbname = dbAlias;

/* get database configuration */
db2CfgSet(db2Version810, (void *)&cfgStruct, &sqlca);
DB2_API_CHECK("Db Log Retain -- Disable");

/*******************************/
/* BACK UP THE DATABASE */
/*******************************/
printf("\n Backing up the ’%s’ database...\n", dbAlias);

tablespaceStruct.tablespaces = NULL;
tablespaceStruct.numTablespaces = 0;

mediaListStruct.locations = &serverWorkingPath;
mediaListStruct.numLocations = 1;
mediaListStruct.locationType = SQLU_LOCAL_MEDIA;

backupStruct.piDBAlias = dbAlias;

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 285

backupStruct.piTablespaceList = &tablespaceStruct;
backupStruct.piMediaList = &mediaListStruct;
backupStruct.piUsername = user;
backupStruct.piPassword = pswd;
backupStruct.piVendorOptions = NULL;
backupStruct.iVendorOptionsSize = 0;
backupStruct.iCallerAction = DB2BACKUP_BACKUP;
backupStruct.iBufferSize = 16; /* 16 x 4KB */
backupStruct.iNumBuffers = 1;
backupStruct.iParallelism =1;
backupStruct.iOptions = DB2BACKUP_OFFLINE | DB2BACKUP_DB;

/* The API db2Backup creates a backup copy of a database.
This API automatically establishes a connection to the
specified database,
(This API can also be used to create a backup copy of a table
space). */

db2Backup (db2Version810, &backupStruct, &sqlca);

DB2_API_CHECK("Database -- Backup");

while (sqlca.sqlcode != 0)
{

/* continue the backup operation */

/* depending on the sqlca.sqlcode value, user action may be
required, such as mounting a new tape */

printf("\n Continuing the backup operation...\n");

backupStruct.iCallerAction = DB2BACKUP_CONTINUE;

/* back up the database */
db2Backup (db2Version810, &backupStruct, &sqlca);

}

printf(" Backup finished.\n");
printf(" - backup image size : %d MB\n",

backupStruct.oBackupSize);
printf(" - backup image path : %s\n",

mediaListStruct.locations[0]);

printf(" - backup image time stamp: %s\n", backupStruct.oTimestamp);

/* To restore a remote database, you will first need to create an
empty database if the client’s code page is different from the
server’s code page.
If this is the case, uncomment the call to DbCreate(). It will
create an empty database on the server with the server’s
code page. */

/*
rc = DbCreate(dbAlias, restoredDbAlias);
if (rc != 0)
{

Sample Program with Embedded SQL (dbrecov.sqc)

286 Data Recovery and High Availability Guide and Reference

return rc;
}

*/

/******************************/
/* RESTORE THE DATABASE */
/******************************/

strcpy(restoreTimestamp, backupStruct.oTimestamp);

rtablespaceStruct.tablespaces = NULL;
rtablespaceStruct.numTablespaces = 0;

rmediaListStruct.locations = &serverWorkingPath;
rmediaListStruct.numLocations = 1;
rmediaListStruct.locationType = SQLU_LOCAL_MEDIA;

restoreStruct.piSourceDBAlias = dbAlias;
restoreStruct.piTargetDBAlias = restoredDbAlias;
restoreStruct.piTimestamp = restoreTimestamp;
restoreStruct.piTargetDBPath = NULL;
restoreStruct.piReportFile = NULL;
restoreStruct.piTablespaceList = &rtablespaceStruct;
restoreStruct.piMediaList = &rmediaListStruct;
restoreStruct.piUsername = user;
restoreStruct.piPassword = pswd;
restoreStruct.piNewLogPath = NULL;
restoreStruct.piVendorOptions = NULL;
restoreStruct.iVendorOptionsSize = 0;
restoreStruct.iParallelism = 1;
restoreStruct.iBufferSize = 1024; /* 1024 x 4KB */;
restoreStruct.iNumBuffers = 1;
restoreStruct.iOptions = DB2RESTORE_OFFLINE | DB2RESTORE_DB |
DB2RESTORE_NODATALINK | DB2RESTORE_NOROLLFWD;

printf("\n Restoring a database ...\n");
printf(" - source image alias : %s\n", dbAlias);
printf(" - source image time stamp: %s\n", restoreTimestamp);
printf(" - target database : %s\n", restoredDbAlias);

restoreStruct.iCallerAction = DB2RESTORE_RESTORE_STORDEF;

/* The API db2Restore is used to restore a database that has been backed
up using the API db2Backup. */

db2Restore(db2Version810, &restoreStruct, &sqlca);

EXPECTED_WARN_CHECK("database restore -- start");

while (sqlca.sqlcode != 0)
{

/* continue the restore operation */
printf("\n Continuing the restore operation...\n");

/* depending on the sqlca.sqlcode value, user action may be
required, such as mounting a new tape */

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 287

if (sqlca.sqlcode == SQLUD_INACCESSABLE_CONTAINER)
{

/* redefine the table space container layout */
printf("\n Find and redefine inaccessable containers.\n");
rc = InaccessableContainersRedefine(serverWorkingPath);
if (rc != 0)
{

return rc;
}

}

restoreStruct.iCallerAction = DB2RESTORE_CONTINUE;

/* restore the database */
db2Restore (db2Version810, &restoreStruct, &sqlca);

DB2_API_CHECK("database restore -- continue");
}

printf("\n Restore finished.\n");

/* drop the restored database */
rc = DbDrop(restoredDbAlias);

return 0;
} /* DbBackupAndRedirectedRestore */

int InaccessableContainersRedefine(char serverWorkingPath[])
{

int rc = 0;
struct sqlca sqlca;
sqluint32 numTablespaces;
struct SQLB_TBSPQRY_DATA **ppTablespaces;
sqluint32 numContainers;
struct SQLB_TBSCONTQRY_DATA *pContainers;
int tspNb;
int contNb;
char pathSep[2];

/* The API sqlbmtsq provides a one-call interface to the table space query
data. The query data for all table spaces in the database is returned
in an array. */

sqlbmtsq(&sqlca,
&numTablespaces,
&ppTablespaces,
SQLB_RESERVED1,
SQLB_RESERVED2);

DB2_API_CHECK("tablespaces -- get");

/* refedine the inaccessable containers */
for (tspNb = 0; tspNb < numTablespaces; tspNb++)
{

/* The API sqlbtcq provides a one-call interface to the table space
container query data. The query data for all the containers in a table

Sample Program with Embedded SQL (dbrecov.sqc)

288 Data Recovery and High Availability Guide and Reference

space, or for all containers in all table spaces, is returned in an
array. */

sqlbtcq(&sqlca, ppTablespaces[tspNb]->id, &numContainers, &pContainers);
DB2_API_CHECK("tablespace containers -- get");

for (contNb = 0; contNb < numContainers; contNb++)
{

if (!pContainers[contNb].ok)
{

/* redefine inaccessable container */
printf("\n Redefine inaccessable container:\n");
printf(" - table space name: %s\n",

ppTablespaces[tspNb]->name);
printf(" - default container name: %s\n",

pContainers[contNb].name);
if (strstr(pContainers[contNb].name, "/"))
{ /* UNIX */

strcpy(pathSep, "/");
}
else
{ /* Intel */

strcpy(pathSep, "\\");
}
switch (pContainers[contNb].contType)
{

case SQLB_CONT_PATH:
printf(" - container type: path\n");

sprintf(pContainers[contNb].name, "%s%sSQLT%04d.%d",
serverWorkingPath, pathSep,
ppTablespaces[tspNb]->id,
pContainers[contNb].id);

printf(" - new container name: %s\n",
pContainers[contNb].name);

break;
case SQLB_CONT_DISK:
case SQLB_CONT_FILE:
default:

printf(" Unknown container type.\n");
break;

}
}

}

/* The API sqlbstsc is used to set or redefine table space containers
while performing a ’redirected’ restore of the database. */

sqlbstsc(&sqlca,
SQLB_SET_CONT_FINAL_STATE,
ppTablespaces[tspNb]->id,
numContainers,
pContainers);

DB2_API_CHECK("tablespace containers -- redefine");

/* The API sqlefmem is used here to free memory allocated by DB2 for use
with the API sqlbtcq (Tablespace Container Query). */

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 289

sqlefmem(&sqlca, pContainers);
DB2_API_CHECK("tablespace containers memory -- free");

}

/* The API sqlefmem is used here to free memory allocated by DB2 for
use with the API sqlbmtsq (Tablespace Query). */

sqlefmem(&sqlca, ppTablespaces);
DB2_API_CHECK("tablespaces memory -- free");

return 0;
} /* InaccessableContainersRedefine */

int DbBackupRestoreAndRollforward(char dbAlias[],
char rolledForwardDbAlias[],
char user[],
char pswd[],
char serverWorkingPath[])

{
int rc = 0;
struct sqlca sqlca;
db2CfgParam cfgParameters[1];
db2Cfg cfgStruct;
unsigned short logretain;

char restoreTimestamp[SQLU_TIME_STAMP_LEN + 1];

db2BackupStruct backupStruct;
db2TablespaceStruct tablespaceStruct;
db2MediaListStruct mediaListStruct;
db2Uint32 backupImageSize;
db2RestoreStruct restoreStruct;
db2TablespaceStruct rtablespaceStruct;
db2MediaListStruct rmediaListStruct;

db2RfwdInputStruct rfwdInput;
db2RfwdOutputStruct rfwdOutput;
db2RollforwardStruct rfwdStruct;

char rollforwardAppId[SQLU_APPLID_LEN + 1];
sqlint32 numReplies;
struct sqlurf_info nodeInfo;

printf("\n****************************\n");
printf("*** ROLLFORWARD RECOVERY ***\n");
printf("****************************\n");
printf("\nUSE THE DB2 APIs:\n");
printf(" db2CfgSet -- Set Configuration\n");
printf(" db2Backup -- Backup Database\n");
printf(" sqlecrea -- Create Database\n");
printf(" db2Restore -- Restore Database\n");
printf(" db2Rollforward -- Rollforward Database\n");
printf(" sqledrpd -- Drop Database\n");
printf("TO BACK UP, RESTORE, AND ROLL A DATABASE FORWARD. \n");

printf("\n Update \’%s\’ database configuration:\n", dbAlias);

Sample Program with Embedded SQL (dbrecov.sqc)

290 Data Recovery and High Availability Guide and Reference

printf(" - Enable the configuration parameter LOGRETAIN \n");
printf(" i.e., set LOGRETAIN = RECOVERY/YES\n");

/* initialize cfgParameters */
cfgParameters[0].flags = 0;
cfgParameters[0].token = SQLF_DBTN_LOG_RETAIN;
cfgParameters[0].ptrvalue = (char *)&logretain;

/* enable the configuration parameter ’logretain’ */
logretain = SQLF_LOGRETAIN_RECOVERY;

/* initialize cfgStruct */
cfgStruct.numItems = 1;
cfgStruct.paramArray = cfgParameters;
cfgStruct.flags = db2CfgDatabase | db2CfgDelayed;
cfgStruct.dbname = dbAlias;

/* get database configuration */
db2CfgSet(db2Version810, (void *)&cfgStruct, &sqlca);
DB2_API_CHECK("Db Log Retain -- Enable");

/* start the backup operation */
printf("\n Backing up the ’%s’ database...\n", dbAlias);

tablespaceStruct.tablespaces = NULL;
tablespaceStruct.numTablespaces = 0;

mediaListStruct.locations = &serverWorkingPath;
mediaListStruct.numLocations = 1;
mediaListStruct.locationType = SQLU_LOCAL_MEDIA;

backupStruct.piDBAlias = dbAlias;
backupStruct.piTablespaceList = &tablespaceStruct;
backupStruct.piMediaList = &mediaListStruct;
backupStruct.piUsername = user;
backupStruct.piPassword = pswd;
backupStruct.piVendorOptions = NULL;
backupStruct.iVendorOptionsSize = 0;
backupStruct.iCallerAction = DB2BACKUP_BACKUP;
backupStruct.iBufferSize = 16; /* 16 x 4KB */
backupStruct.iNumBuffers = 1;
backupStruct.iParallelism =1;
backupStruct.iOptions = DB2BACKUP_OFFLINE | DB2BACKUP_DB;

/* The API db2Backup creates a backup copy of a database.
This API automatically establishes a connection to the specified database.
(This API can also be used to create a backup copy of a table space). */

db2Backup (db2Version810, &backupStruct, &sqlca);

DB2_API_CHECK("Database -- Backup");

while (sqlca.sqlcode != 0)
{

/* continue the backup operation */
printf("\n Continuing the backup operation...\n");

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 291

/* depending on the sqlca.sqlcode value, user action may be
required, such as mounting a new tape. */

backupStruct.iCallerAction = DB2BACKUP_CONTINUE;

/* back up the database */
db2Backup (db2Version810, &backupStruct, &sqlca);

DB2_API_CHECK("Database -- Backup");
}

printf(" Backup finished.\n");
printf(" - backup image size : %d MB\n",

backupStruct.oBackupSize);
printf(" - backup image path : %s\n",

mediaListStruct.locations[0]);

printf(" - backup image time stamp: %s\n", backupStruct.oTimestamp);

/* To restore a remote database, you will first need to create an
empty database

if the client’s code page is different from the server’s code page.
If this is the case, uncomment the call to DbCreate(). It will create
an empty database on the server with the server’s code page. */

/*
rc = DbCreate(dbAlias, rolledForwardDbAlias);
if (rc != 0)
{

return rc;
}

*/

/******************************/
/* RESTORE THE DATABASE */
/******************************/

strcpy(restoreTimestamp, backupStruct.oTimestamp);

rtablespaceStruct.tablespaces = NULL;
rtablespaceStruct.numTablespaces = 0;

rmediaListStruct.locations = &serverWorkingPath;
rmediaListStruct.numLocations = 1;
rmediaListStruct.locationType = SQLU_LOCAL_MEDIA;

restoreStruct.piSourceDBAlias = dbAlias;
restoreStruct.piTargetDBAlias = rolledForwardDbAlias;
restoreStruct.piTimestamp = restoreTimestamp;
restoreStruct.piTargetDBPath = NULL;
restoreStruct.piReportFile = NULL;
restoreStruct.piTablespaceList = &rtablespaceStruct;
restoreStruct.piMediaList = &rmediaListStruct;
restoreStruct.piUsername = user;

Sample Program with Embedded SQL (dbrecov.sqc)

292 Data Recovery and High Availability Guide and Reference

restoreStruct.piPassword = pswd;
restoreStruct.piNewLogPath = NULL;
restoreStruct.piVendorOptions = NULL;
restoreStruct.iVendorOptionsSize = 0;
restoreStruct.iParallelism = 1;
restoreStruct.iBufferSize = 1024; /* 1024 x 4KB */;
restoreStruct.iNumBuffers = 1;
restoreStruct.iCallerAction = DB2RESTORE_RESTORE;
restoreStruct.iOptions = DB2RESTORE_OFFLINE | DB2RESTORE_DB |
DB2RESTORE_NODATALINK | DB2RESTORE_ROLLFWD;

printf("\n Restoring a database ...\n");
printf(" - source image alias : %s\n", dbAlias);
printf(" - source image time stamp: %s\n", restoreTimestamp);
printf(" - target database : %s\n", rolledForwardDbAlias);

/* The API db2Restore is used to restore a database that has been backed
up using the API db2Backup. */

db2Restore (db2Version810, &restoreStruct, &sqlca);

DB2_API_CHECK("database restore -- start");

while (sqlca.sqlcode != 0)
{

/* continue the restore operation */
printf("\n Continuing the restore operation...\n");

/* Depending on the sqlca.sqlcode value, user action may be
required, such as mounting a new tape. */

restoreStruct.iCallerAction = DB2RESTORE_CONTINUE;

/* restore the database */
db2Restore (db2Version810, &restoreStruct, &sqlca);

DB2_API_CHECK("database restore -- continue");
}

printf("\n Restore finished.\n");

/******************************/
/* ROLLFORWARD RECOVERY */
/******************************/

printf("\n Rolling ’%s’ database forward ...\n", rolledForwardDbAlias);

rfwdInput.version = SQLUM_RFWD_VERSION;
rfwdInput.pDbAlias = rolledForwardDbAlias;
rfwdInput.CallerAction = SQLUM_ROLLFWD_STOP;
rfwdInput.pStopTime = SQLUM_INFINITY_TIMESTAMP;
rfwdInput.pUserName = user;
rfwdInput.pPassword = pswd;
rfwdInput.pOverflowLogPath = serverWorkingPath;
rfwdInput.NumChngLgOvrflw = 0;

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 293

rfwdInput.pChngLogOvrflw = NULL;
rfwdInput.ConnectMode = SQLUM_OFFLINE;
rfwdInput.pTablespaceList = NULL;
rfwdInput.AllNodeFlag = SQLURF_ALL_NODES;
rfwdInput.NumNodes = 0;
rfwdInput.pNodeList = NULL;
rfwdInput.pDroppedTblID = NULL;
rfwdInput.pExportDir = NULL;
rfwdInput.NumNodeInfo = 1;
rfwdInput.RollforwardFlags = 0;

rfwdOutput.pApplicationId = rollforwardAppId;
rfwdOutput.pNumReplies = &numReplies;
rfwdOutput.pNodeInfo = &nodeInfo;

rfwdStruct.roll_input = &rfwdInput;
rfwdStruct.roll_output = &rfwdOutput;

/* rollforward database */
/* The API db2Rollforward rollforward recovers a database by

applying transactions recorded in the database log files. */
db2Rollforward(db2Version810, &rfwdStruct, &sqlca);

DB2_API_CHECK("rollforward -- start");

printf(" Rollforward finished.\n");

/* drop the restored database */
rc = DbDrop(rolledForwardDbAlias);

return 0;
} /* DbBackupRestoreAndRollforward */

int DbLogRecordsForCurrentConnectionRead(char dbAlias[],
char user[],
char pswd[],
char serverWorkingPath[])

{
int rc = 0;
struct sqlca sqlca;
db2CfgParam cfgParameters[1];
db2Cfg cfgStruct;
unsigned short logretain;

db2BackupStruct backupStruct;
db2TablespaceStruct tablespaceStruct;
db2MediaListStruct mediaListStruct;
db2Uint32 backupImageSize;
db2RestoreStruct restoreStruct;
db2TablespaceStruct rtablespaceStruct;
db2MediaListStruct rmediaListStruct;

SQLU_LSN startLSN;
SQLU_LSN endLSN;
char *logBuffer;

Sample Program with Embedded SQL (dbrecov.sqc)

294 Data Recovery and High Availability Guide and Reference

sqluint32 logBufferSize;
db2ReadLogInfoStruct readLogInfo;
db2ReadLogStruct readLogInput;
int i;

printf("\n*****************************\n");
printf("*** ASYNCHRONOUS READ LOG ***\n");
printf("*****************************\n");
printf("\nUSE THE DB2 APIs:\n");
printf(" db2CfgSet -- Set Configuration\n");
printf(" db2Backup -- Backup Database\n");
printf(" db2ReadLog -- Asynchronous Read Log\n");
printf("AND THE SQL STATEMENTS:\n");
printf(" CONNECT\n");
printf(" ALTER TABLE\n");
printf(" COMMIT\n");
printf(" INSERT\n");
printf(" DELETE\n");
printf(" ROLLBACK\n");
printf(" CONNECT RESET\n");
printf("TO READ LOG RECORDS FOR THE CURRENT CONNECTION.\n");

printf("\n Update \’%s\’ database configuration:\n", dbAlias);
printf(" - Enable the database configuration parameter LOGRETAIN \n");
printf(" i.e., set LOGRETAIN = RECOVERY/YES\n");

/* initialize cfgParameters */
cfgParameters[0].flags = 0;
cfgParameters[0].token = SQLF_DBTN_LOG_RETAIN;
cfgParameters[0].ptrvalue = (char *)&logretain;

/* enable LOGRETAIN */
logretain = SQLF_LOGRETAIN_RECOVERY;

/* initialize cfgStruct */
cfgStruct.numItems = 1;
cfgStruct.paramArray = cfgParameters;
cfgStruct.flags = db2CfgDatabase | db2CfgDelayed;
cfgStruct.dbname = dbAlias;

/* get database configuration */
db2CfgSet(db2Version810, (void *)&cfgStruct, &sqlca);
DB2_API_CHECK("Db Log Retain -- Enable");

/* start the backup operation */
printf("\n Backing up the ’%s’ database...\n", dbAlias);

tablespaceStruct.tablespaces = NULL;
tablespaceStruct.numTablespaces = 0;

mediaListStruct.locations = &serverWorkingPath;
mediaListStruct.numLocations = 1;
mediaListStruct.locationType = SQLU_LOCAL_MEDIA;

backupStruct.piDBAlias = dbAlias;

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 295

backupStruct.piTablespaceList = &tablespaceStruct;
backupStruct.piMediaList = &mediaListStruct;
backupStruct.piUsername = user;
backupStruct.piPassword = pswd;
backupStruct.piVendorOptions = NULL;
backupStruct.iVendorOptionsSize = 0;
backupStruct.iCallerAction = DB2BACKUP_BACKUP;
backupStruct.iBufferSize = 16; /* 16 x 4KB */
backupStruct.iNumBuffers = 1;
backupStruct.iParallelism =1;
backupStruct.iOptions = DB2BACKUP_OFFLINE | DB2BACKUP_DB;

/* The API db2Backup creates a backup copy of a database.
This API automatically establishes a connection to the specified database.
(This API can also be used to create a backup copy of a table space). */

db2Backup (db2Version810, &backupStruct, &sqlca);

DB2_API_CHECK("Database -- Backup");

while (sqlca.sqlcode != 0)
{

/* continue the backup operation */
printf("\n Continuing the backup operation...\n");

/* Depending on the sqlca.sqlcode value, user action may be
required, such as mounting a new tape. */

backupStruct.iCallerAction = DB2BACKUP_CONTINUE;

/* back up the database */
db2Backup (db2Version810, &backupStruct, &sqlca);

DB2_API_CHECK("Database -- Backup");
}

printf(" Backup finished.\n");
printf(" - backup image size : %d MB\n", backupStruct.oBackupSize);
printf(" - backup image path : %s\n", mediaListStruct.locations[0]);

printf(" - backup image time stamp: %s\n", backupStruct.oTimestamp);

/* connect to the database */
rc = DbConn(dbAlias, user, pswd);
if (rc != 0)
{

return rc;
}

/* invoke SQL statements to fill database log */
printf("\n Invoke the following SQL statements:\n"

" ALTER TABLE emp_resume DATA CAPTURE CHANGES;\n"
" COMMIT;\n"
" INSERT INTO emp_resume\n"
" VALUES(’000777’, ’ascii’, ’This is a new resume.’);\n"
" (’777777’, ’ascii’, ’This is another new resume’);\n"

Sample Program with Embedded SQL (dbrecov.sqc)

296 Data Recovery and High Availability Guide and Reference

" COMMIT;\n"
" DELETE FROM emp_resume WHERE empno = ’000777’;\n"
" DELETE FROM emp_resume WHERE empno = ’777777’;\n"
" COMMIT;\n"
" DELETE FROM emp_resume WHERE empno = ’000140’;\n"
" ROLLBACK;\n"
" ALTER TABLE emp_resume DATA CAPTURE NONE;\n"
" COMMIT;\n");

EXEC SQL ALTER TABLE emp_resume DATA CAPTURE CHANGES;
EMB_SQL_CHECK("SQL statement 1 -- invoke");

EXEC SQL COMMIT;
EMB_SQL_CHECK("SQL statement 2 -- invoke");

EXEC SQL INSERT INTO emp_resume
VALUES(’000777’, ’ascii’, ’This is a new resume.’),

(’777777’, ’ascii’, ’This is another new resume’);
EMB_SQL_CHECK("SQL statement 3 -- invoke");

EXEC SQL COMMIT;
EMB_SQL_CHECK("SQL statement 4 -- invoke");

EXEC SQL DELETE FROM emp_resume WHERE empno = ’000777’;
EMB_SQL_CHECK("SQL statement 5 -- invoke");

EXEC SQL DELETE FROM emp_resume WHERE empno = ’777777’;
EMB_SQL_CHECK("SQL statement 6 -- invoke");

EXEC SQL COMMIT;
EMB_SQL_CHECK("SQL statement 7 -- invoke");

EXEC SQL DELETE FROM emp_resume WHERE empno = ’000140’;
EMB_SQL_CHECK("SQL statement 8 -- invoke");

EXEC SQL ROLLBACK;
EMB_SQL_CHECK("SQL statement 9 -- invoke");

EXEC SQL ALTER TABLE emp_resume DATA CAPTURE NONE;
EMB_SQL_CHECK("SQL statement 10 -- invoke");

EXEC SQL COMMIT;
EMB_SQL_CHECK("SQL statement 11 -- invoke");

printf("\n Start reading database log.\n");

logBuffer = NULL;
logBufferSize = 0;

/* The API db2ReadLog (Asynchronous Read Log) is used to extract records
from the database logs, and to query the log manager for current
log state information.
This API can only be used on recoverable databases. */

/* Query the log manager for current log state information. */

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 297

readLogInput.iCallerAction = DB2READLOG_QUERY;
readLogInput.piStartLSN = NULL;
readLogInput.piEndLSN = NULL;
readLogInput.poLogBuffer = NULL;
readLogInput.iLogBufferSize = 0;
readLogInput.iFilterOption = DB2READLOG_FILTER_ON;
readLogInput.poReadLogInfo = &readLogInfo;

rc = db2ReadLog(db2Version810,
&readLogInput,
&sqlca);

DB2_API_CHECK("database log info -- get");

logBufferSize = 64 * 1024;
logBuffer = (char *)malloc(logBufferSize);

memcpy(&startLSN, &(readLogInfo.initialLSN), sizeof(startLSN));
memcpy(&endLSN, &(readLogInfo.nextStartLSN), sizeof(endLSN));

/* Extract a log record from the database logs, and
read the first log sequence asynchronously. */

readLogInput.iCallerAction = DB2READLOG_READ;
readLogInput.piStartLSN = &startLSN;
readLogInput.piEndLSN = &endLSN;
readLogInput.poLogBuffer = logBuffer;
readLogInput.iLogBufferSize = logBufferSize;
readLogInput.iFilterOption = DB2READLOG_FILTER_ON;
readLogInput.poReadLogInfo = &readLogInfo;

rc = db2ReadLog(db2Version810,
&readLogInput,
&sqlca);

if (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)
{

DB2_API_CHECK("database logs -- read");
}
else
{

if (readLogInfo.logRecsWritten == 0)
{

printf("\n Database log empty.\n");
}

}

/* display log buffer */
rc = LogBufferDisplay(logBuffer, readLogInfo.logRecsWritten);

while (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)
{

/* read the next log sequence */

memcpy(&startLSN, &(readLogInfo.nextStartLSN), sizeof(startLSN));

/* Extract a log record from the database logs, and

Sample Program with Embedded SQL (dbrecov.sqc)

298 Data Recovery and High Availability Guide and Reference

read the next log sequence asynchronously. */
rc = db2ReadLog(db2Version810,

&readLogInput,
&sqlca);

if (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)
{

DB2_API_CHECK("database logs -- read");
}

/* display log buffer */
rc = LogBufferDisplay(logBuffer, readLogInfo.logRecsWritten);

}

/* free the log buffer */
free(logBuffer);

/* disconnect from the database */
rc = DbDisconn(dbAlias);
if (rc != 0)
{

return rc;
}

return 0;
} /* DbLogRecordsForCurrentConnectionRead */

int DbReadLogRecordsNoConn(char dbAlias[])
{

int rc = 0;
struct sqlca sqlca;
char logPath[SQL_PATH_SZ + 1];
db2CfgParam cfgParameters[1];
db2Cfg cfgStruct;
char nodeName[] = "NODE0000\0";
db2Uint32 readLogMemSize = 4 * 4096;
char *readLogMemory = NULL;
struct db2ReadLogNoConnInitStruct readLogInit;
struct db2ReadLogNoConnInfoStruct readLogInfo;
struct db2ReadLogNoConnStruct readLogInput;
SQLU_LSN startLSN;
SQLU_LSN endLSN;
char *logBuffer = NULL;
db2Uint32 logBufferSize = 0;
struct db2ReadLogNoConnTermStruct readLogTerm;

printf("\n*********************************\n");
printf("*** NO DB CONNECTION READ LOG ***\n");
printf("*********************************\n");
printf("\nUSE THE DB2 APIs:\n");
printf(" db2ReadLogNoConnInit -- Initialize No Db Connection Read Log\n");
printf(" db2ReadLogNoConn -- No Db Connection Read Log\n");
printf(" db2ReadLogNoConnTerm -- Terminate No Db Connection Read Log\n");
printf("TO READ LOG RECORDS FROM A DATABASE LOG DIRECTORY.\n");

/* Determine the logpath to read log files from */

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 299

cfgParameters[0].flags = 0;
cfgParameters[0].token = SQLF_DBTN_LOGPATH;
cfgParameters[0].ptrvalue =

(char *)malloc((SQL_PATH_SZ + 1) * sizeof(char));

/* Initialize cfgStruct */
cfgStruct.numItems = 1;
cfgStruct.paramArray = cfgParameters;
cfgStruct.flags = db2CfgDatabase;
cfgStruct.dbname = dbAlias;

db2CfgGet(db2Version810, (void *)&cfgStruct, &sqlca);
DB2_API_CHECK("log path -- get");

strcpy(logPath, cfgParameters[0].ptrvalue);
free(cfgParameters[0].ptrvalue);

/* First we must allocate memory for the API’s control blocks and log
buffer */

readLogMemory = (char*)malloc(readLogMemSize);

/* Invoke the initialization API to set up the control blocks */
readLogInit.iFilterOption = DB2READLOG_FILTER_ON;
readLogInit.piLogFilePath = logPath;
readLogInit.piOverflowLogPath = NULL;
readLogInit.iRetrieveLogs = DB2READLOGNOCONN_RETRIEVE_OFF;
readLogInit.piDatabaseName = dbAlias;
readLogInit.piNodeName = nodeName;
readLogInit.iReadLogMemoryLimit = readLogMemSize;
readLogInit.poReadLogMemPtr = &readLogMemory;

rc = db2ReadLogNoConnInit(db2Version810,
&readLogInit,
&sqlca);

if (sqlca.sqlcode != SQLU_RLOG_LSNS_REUSED)
{

DB2_API_CHECK("database logs no db conn -- initialization");
}

/* Query for the current log information */
readLogInput.iCallerAction = DB2READLOG_QUERY;
readLogInput.piStartLSN = NULL;
readLogInput.piEndLSN = NULL;
readLogInput.poLogBuffer = NULL;
readLogInput.iLogBufferSize = 0;
readLogInput.piReadLogMemPtr = readLogMemory;
readLogInput.poReadLogInfo = &readLogInfo;

rc = db2ReadLogNoConn(db2Version810,
&readLogInput,
&sqlca);

if (sqlca.sqlcode != 0)
{

DB2_API_CHECK("database logs no db conn -- query");
}

Sample Program with Embedded SQL (dbrecov.sqc)

300 Data Recovery and High Availability Guide and Reference

/* Read some log records */
logBufferSize = 64 * 1024;
logBuffer = (char *)malloc(logBufferSize);

memcpy(&startLSN, &(readLogInfo.nextStartLSN), sizeof(startLSN));
endLSN.lsnWord[0] = 0xffff;
endLSN.lsnWord[1] = 0xffff;
endLSN.lsnWord[2] = 0xffff;

readLogInput.iCallerAction = DB2READLOG_READ;
readLogInput.piStartLSN = &startLSN;
readLogInput.piEndLSN = &endLSN;
readLogInput.poLogBuffer = logBuffer;
readLogInput.iLogBufferSize = logBufferSize;
readLogInput.piReadLogMemPtr = readLogMemory;
readLogInput.poReadLogInfo = &readLogInfo;

rc = db2ReadLogNoConn(db2Version810,
&readLogInput,
&sqlca);

if (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)
{

DB2_API_CHECK("database logs no db conn -- read");
}
else
{

if (readLogInfo.logRecsWritten == 0)
{

printf("\n Database log empty.\n");
}

}

/* Display the log records read */
rc = LogBufferDisplay(logBuffer, readLogInfo.logRecsWritten);

while (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)
{

/* read the next log sequence */
memcpy(&startLSN, &(readLogInfo.nextStartLSN), sizeof(startLSN));

/* Extract a log record from the database logs, and
read the next log sequence asynchronously. */
rc = db2ReadLogNoConn(db2Version810,

&readLogInput,
&sqlca);

if (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)
{

DB2_API_CHECK("database logs no db conn -- read");
}

/* display log buffer */
rc = LogBufferDisplay(logBuffer, readLogInfo.logRecsWritten);

}

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 301

printf("\nRead to end of logs.\n\n");
free(logBuffer);

readLogTerm.poReadLogMemPtr = &readLogMemory;

rc = db2ReadLogNoConnTerm(db2Version810,
&readLogTerm,
&sqlca);

if (sqlca.sqlcode != 0)
{

DB2_API_CHECK("database logs no db conn -- terminate");
}

return 0;
} /* DbReadLogRecordsNoConn */

int LogBufferDisplay(char *logBuffer, sqluint32 numLogRecords)
{

int rc = 0;
sqluint32 logRecordNb;
sqluint32 recordSize;
sqluint16 recordType;
sqluint16 recordFlag;
char *recordBuffer;

/* initialize recordBuffer */
recordBuffer = logBuffer + sizeof(SQLU_LSN);

for (logRecordNb = 0; logRecordNb < numLogRecords; logRecordNb++)
{

recordSize = *(sqluint32 *)(recordBuffer);
recordType = *(sqluint16 *)(recordBuffer + 4);
recordFlag = *(sqluint16 *)(recordBuffer + 6);

rc = LogRecordDisplay(recordBuffer, recordSize, recordType, recordFlag);
/* update recordBuffer */
recordBuffer = recordBuffer + recordSize + sizeof(SQLU_LSN);

}

return 0;
} /* LogBufferDisplay */

int LogRecordDisplay(char *recordBuffer,
sqluint32 recordSize,
sqluint16 recordType,
sqluint16 recordFlag)

{
int rc = 0;
sqluint32 logManagerLogRecordHeaderSize;
char *recordDataBuffer;
sqluint32 recordDataSize;
char *recordHeaderBuffer;
sqluint8 componentIdentifier;
sqluint32 recordHeaderSize;

Sample Program with Embedded SQL (dbrecov.sqc)

302 Data Recovery and High Availability Guide and Reference

/* determine logManagerLogRecordHeaderSize */
if (recordType == 0x0043)
{ /* compensation */

if (recordFlag & 0x0002)
{ /* propagatable */

logManagerLogRecordHeaderSize = 32;
}
else
{

logManagerLogRecordHeaderSize = 26;
}

}
else
{ /* non compensation */

logManagerLogRecordHeaderSize = 20;
}

switch (recordType)
{

case 0x008A:
case 0x0084:
case 0x0041:

recordDataBuffer = recordBuffer + logManagerLogRecordHeaderSize;
recordDataSize = recordSize - logManagerLogRecordHeaderSize;
rc = SimpleLogRecordDisplay(recordType,

recordFlag,
recordDataBuffer,
recordDataSize);

break;
case 0x004E:
case 0x0043:

recordHeaderBuffer = recordBuffer + logManagerLogRecordHeaderSize;
componentIdentifier = *(sqluint8 *)recordHeaderBuffer;
switch (componentIdentifier)
{

case 1:
recordHeaderSize = 6;
break;

default:
printf(" Unknown complex log record: %lu %c %u\n",

recordSize, recordType, componentIdentifier);
return 1;

}
recordDataBuffer = recordBuffer +

logManagerLogRecordHeaderSize +
recordHeaderSize;

recordDataSize = recordSize -
logManagerLogRecordHeaderSize -
recordHeaderSize;

rc = ComplexLogRecordDisplay(recordType,
recordFlag,
recordHeaderBuffer,
recordHeaderSize,
componentIdentifier,
recordDataBuffer,

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 303

recordDataSize);
break;

default:
printf(" Unknown log record: %lu \"%c\"\n",

recordSize, (char)recordType);
break;

}

return 0;
} /* LogRecordDisplay */

int SimpleLogRecordDisplay(sqluint16 recordType,
sqluint16 recordFlag,
char *recordDataBuffer,
sqluint32 recordDataSize)

{
int rc = 0;
sqluint32 timeTransactionCommited;
sqluint16 authIdLen;
char authId[129];

switch (recordType)
{

case 138:
printf("\n Record type: Local pending list\n");
timeTransactionCommited = *(sqluint32 *)(recordDataBuffer);
authIdLen = *(sqluint16 *)(recordDataBuffer + 4);
memcpy(authId, (char *)(recordDataBuffer + 6), authIdLen);
authId[authIdLen] = ’\0’;
printf(" %s: %lu\n",

"UTC transaction committed (in seconds since 01/01/70)",
timeTransactionCommited);

printf(" authorization ID of the application: %s\n", authId);
break;

case 132:
printf("\n Record type: Normal commit\n");
timeTransactionCommited = *(sqluint32 *)(recordDataBuffer);
authIdLen = (sqluint16) (recordDataSize - 4);
memcpy(authId, (char *)(recordDataBuffer + 4), authIdLen);
authId[authIdLen] = ’\0’;
printf(" %s: %lu\n",

"UTC transaction committed (in seconds since 01/01/70)",
timeTransactionCommited);

printf(" authorization ID of the application: %s\n", authId);
break;

case 65:
printf("\n Record type: Normal abort\n");
authIdLen = (sqluint16) (recordDataSize);
memcpy(authId, (char *)(recordDataBuffer), authIdLen);
authId[authIdLen] = ’\0’;
printf(" authorization ID of the application: %s\n", authId);
break;

default:
printf(" Unknown simple log record: %d %lu\n",

recordType, recordDataSize);

Sample Program with Embedded SQL (dbrecov.sqc)

304 Data Recovery and High Availability Guide and Reference

break;
}

return 0;
} /* SimpleLogRecordDisplay */

int ComplexLogRecordDisplay(sqluint16 recordType,
sqluint16 recordFlag,
char *recordHeaderBuffer,
sqluint32 recordHeaderSize,
sqluint8 componentIdentifier,
char *recordDataBuffer,
sqluint32 recordDataSize)

{
int rc = 0;
sqluint8 functionIdentifier;
/* for insert, delete, undo delete */
sqluint32 RID;
sqluint16 subRecordLen;
sqluint16 subRecordOffset;
char *subRecordBuffer;
/* for update */
sqluint32 newRID;
sqluint16 newSubRecordLen;
sqluint16 newSubRecordOffset;
char *newSubRecordBuffer;
sqluint32 oldRID;
sqluint16 oldSubRecordLen;
sqluint16 oldSubRecordOffset;
char *oldSubRecordBuffer;
/* for alter table attributes */
sqluint32 alterBitMask;
sqluint32 alterBitValues;

switch ((char)recordType)
{

case ’N’:
printf("\n Record type: Normal\n");
break;

case ’C’:
printf("\n Record type: Compensation\n");
break;

default:
printf("\n Unknown complex log record type: %c\n", recordType);
break;

}

switch (componentIdentifier)
{

case 1:
printf(" component ID: DMS log record\n");
break;

default:
printf(" unknown component ID: %d\n", componentIdentifier);
break;

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 305

}

functionIdentifier = *(sqluint8 *)(recordHeaderBuffer + 1);
switch (functionIdentifier)
{

case 106:
printf(" function ID: Delete Record\n");
RID = *(sqluint32 *)(recordDataBuffer + 2);
subRecordLen = *(sqluint16 *)(recordDataBuffer + 6);
subRecordOffset = *(sqluint16 *)(recordDataBuffer + 10);
printf(" RID: %lu\n", RID);
printf(" subrecord length: %u\n", subRecordLen);
printf(" subrecord offset: %u\n", subRecordOffset);
subRecordBuffer = recordDataBuffer + 12;
rc = LogSubRecordDisplay(subRecordBuffer, subRecordLen);
break;

case 111:
printf(" function ID: Undo Delete Record\n");
RID = *(sqluint32 *)(recordDataBuffer + 2);
subRecordLen = *(sqluint16 *)(recordDataBuffer + 6);
subRecordOffset = *(sqluint16 *)(recordDataBuffer + 10);
printf(" RID: %lu\n", RID);
printf(" subrecord length: %u\n", subRecordLen);
printf(" subrecord offset: %u\n", subRecordOffset);
subRecordBuffer = recordDataBuffer + 12;
rc = LogSubRecordDisplay(subRecordBuffer, subRecordLen);
break;

case 118:
printf(" function ID: Insert Record\n");
RID = *(sqluint32 *)(recordDataBuffer + 2);
subRecordLen = *(sqluint16 *)(recordDataBuffer + 6);
subRecordOffset = *(sqluint16 *)(recordDataBuffer + 10);
printf(" RID: %lu\n", RID);
printf(" subrecord length: %u\n", subRecordLen);
printf(" subrecord offset: %u\n", subRecordOffset);
subRecordBuffer = recordDataBuffer + 12;
rc = LogSubRecordDisplay(subRecordBuffer, subRecordLen);
break;

case 120:
printf(" function ID: Update Record\n");
oldRID = *(sqluint32 *)(recordDataBuffer + 2);
oldSubRecordLen = *(sqluint16 *)(recordDataBuffer + 6);
oldSubRecordOffset = *(sqluint16 *)(recordDataBuffer + 10);
newRID = *(sqluint32 *)(recordDataBuffer +

12 +
oldSubRecordLen +
recordHeaderSize +
2);

newSubRecordLen = *(sqluint16 *)(recordDataBuffer +
12 +
oldSubRecordLen +
recordHeaderSize +
6);

newSubRecordOffset = *(sqluint16 *)(recordDataBuffer +
12 +

Sample Program with Embedded SQL (dbrecov.sqc)

306 Data Recovery and High Availability Guide and Reference

oldSubRecordLen +
recordHeaderSize +
10);

printf(" oldRID: %lu\n", oldRID);
printf(" old subrecord length: %u\n", oldSubRecordLen);
printf(" old subrecord offset: %u\n", oldSubRecordOffset);
oldSubRecordBuffer = recordDataBuffer + 12;
rc = LogSubRecordDisplay(oldSubRecordBuffer, oldSubRecordLen);
printf(" newRID: %lu\n", newRID);
printf(" new subrecord length: %u\n", newSubRecordLen);
printf(" new subrecord offset: %u\n", newSubRecordOffset);
newSubRecordBuffer = recordDataBuffer +

12 +
oldSubRecordLen +
recordHeaderSize +
12;

rc = LogSubRecordDisplay(newSubRecordBuffer, newSubRecordLen);
break;

case 124:
printf(" function ID: Alter Table Attribute\n");
alterBitMask = *(sqluint32 *)(recordDataBuffer + 2);
alterBitValues = *(sqluint32 *)(recordDataBuffer + 6);
if (alterBitMask & 0x00000001)
{

/* Alter the value of the ’propagation’ attribute: */
printf(" Propagation attribute is changed to: ");
if (alterBitValues & 0x00000001)
{

printf("ON\n");
}
else
{

printf("OFF\n");
}

}
if (alterBitMask & 0x00000002)
{

/* Alter the value of the ’pending’ attribute: */
printf(" Pending attribute is changed to: ");
if (alterBitValues & 0x00000002)
{

printf("ON\n");
}
else
{

printf("OFF\n");
}

}
if (alterBitMask & 0x00010000)
{

/* Alter the value of the ’append mode’ attribute: */
printf(" Append Mode attribute is changed to: ");
if (alterBitValues & 0x00010000)
{

printf("ON\n");

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 307

}
else
{

printf("OFF\n");
}

}
if (alterBitMask & 0x00200000)
{

/* Alter the value of the ’LF Propagation’ attribute: */
printf(" LF Propagation attribute is changed to: ");
if (alterBitValues & 0x00200000)
{

printf("ON\n");
}
else
{

printf("OFF\n");
}

}
if (alterBitMask & 0x00400000)
{

/* Alter the value of the ’LOB Propagation’ attribute: */
printf(" LOB Propagation attribute is changed to: ");
if (alterBitValues & 0x00400000)
{

printf("ON\n");
}
else
{

printf("OFF\n");
}

}
break;

default:
printf(" unknown function identifier: %u\n",

functionIdentifier);
break;

}

return 0;
} /* ComplexLogRecordDisplay */

int LogSubRecordDisplay(char *recordBuffer, sqluint16 recordSize)
{

int rc = 0;
sqluint8 recordType;
sqluint8 updatableRecordType;
sqluint16 userDataFixedLength;
char *userDataBuffer;
sqluint16 userDataSize;

recordType = *(sqluint8 *)(recordBuffer);
if ((recordType != 0) &&

(recordType != 4) &&
(recordType != 16))

Sample Program with Embedded SQL (dbrecov.sqc)

308 Data Recovery and High Availability Guide and Reference

{
printf(" Unknown subrecord type: %x\n", recordType);

}
else if (recordType == 4)
{

printf(" subrecord type: Special control\n");
}
else
{

/* recordType == 0 or recordType == 16
* record Type 0 indicates a normal record
* record Type 16, for the purposes of this program, should be treated
* as type 0
*/
printf(" subrecord type: Updatable, ");
updatableRecordType = *(sqluint8 *)(recordBuffer + 4);
if (updatableRecordType != 1)
{

printf("Internal control\n");
}
else
{

printf("Formatted user data\n");
userDataFixedLength = *(sqluint16 *)(recordBuffer + 6);
printf(" user data fixed length: %u\n",

userDataFixedLength);
userDataBuffer = recordBuffer + 8;
userDataSize = recordSize - 8;
rc = UserDataDisplay(userDataBuffer, userDataSize);

}
}

return 0;
} /* LogSubRecordDisplay */

int UserDataDisplay(char *dataBuffer, sqluint16 dataSize)
{

int rc = 0;

sqluint16 line, col;

printf(" user data:\n");

for (line = 0; line * 10 < dataSize; line = line + 1)
{

printf(" ");
for (col = 0; col < 10; col = col + 1)
{

if (line * 10 + col < dataSize)
{

printf("%02X ", dataBuffer[line * 10 + col]);
}
else
{

printf(" ");

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 309

}
}
printf("*");
for (col = 0; col < 10; col = col + 1)
{

if (line * 10 + col < dataSize)
{

if (isalpha(dataBuffer[line * 10 + col]) ||
isdigit(dataBuffer[line * 10 + col]))

{
printf("%c", dataBuffer[line * 10 + col]);

}
else
{

printf(".");
}

}
else
{

printf(" ");
}

}
printf("*");
printf("\n");

}

return 0;
} /* UserDataDisplay */

int DbRecoveryHistoryFileRead(char dbAlias[])
{

int rc = 0;
struct sqlca sqlca;
struct db2HistoryOpenStruct dbHistoryOpenParam;
sqluint32 numEntries;
sqluint16 recoveryHistoryFileHandle;
sqluint32 entryNb;
struct db2HistoryGetEntryStruct dbHistoryEntryGetParam;
struct db2HistoryData histEntryData;

printf("\n***\n");
printf("*** READ A DATABASE RECOVERY HISTORY FILE ***\n");
printf("***\n");
printf("\nUSE THE DB2 APIs:\n");
printf(" db2HistoryOpenScan -- Open Recovery History File Scan\n");
printf(" db2HistoryGetEntry -- Get Next Recovery History File Entry\n");
printf(" db2HistoryCloseScan -- Close Recovery History File Scan\n");
printf("TO READ A DATABASE RECOVERY HISTORY FILE.\n");

/* initialize the data structures */
dbHistoryOpenParam.piDatabaseAlias = dbAlias;
dbHistoryOpenParam.piTimestamp = NULL;
dbHistoryOpenParam.piObjectName = NULL;
dbHistoryOpenParam.iCallerAction = DB2HISTORY_LIST_HISTORY;

Sample Program with Embedded SQL (dbrecov.sqc)

310 Data Recovery and High Availability Guide and Reference

dbHistoryEntryGetParam.pioHistData = &histEntryData;
dbHistoryEntryGetParam.iCallerAction = DB2HISTORY_GET_ALL;
rc = HistoryEntryDataFieldsAlloc(&histEntryData);
if (rc != 0)
{

return rc;
}

/***/
/* OPEN THE DATABASE RECOVERY HISTORY FILE */
/***/
printf("\n Open recovery history file for ’%s’ database.\n", dbAlias);

/* open the recovery history file to scan */
db2HistoryOpenScan(db2Version810, &dbHistoryOpenParam, &sqlca);
DB2_API_CHECK("database recovery history file -- open");

numEntries = dbHistoryOpenParam.oNumRows;

/* dbHistoryOpenParam.oHandle returns the handle for scan access */
recoveryHistoryFileHandle = dbHistoryOpenParam.oHandle;
dbHistoryEntryGetParam.iHandle = recoveryHistoryFileHandle;

/**/
/* READ AN ENTRY IN THE RECOVERY HISTORY FILE */
/**/
for (entryNb = 0; entryNb < numEntries; entryNb = entryNb + 1)
{

printf("\n Read entry number %u.\n", entryNb);

/* get the next entry from the recovery history file */
db2HistoryGetEntry(db2Version810, &dbHistoryEntryGetParam, &sqlca);
DB2_API_CHECK("database recovery history file entry -- read")

/* display the entries in the recovery history file */
printf("\n Display entry number %u.\n", entryNb);
rc = HistoryEntryDisplay(histEntryData);

}

/**/
/* CLOSE THE DATABASE RECOVERY HISTORY FILE */
/**/
printf("\n Close recovery history file for ’%s’ database.\n", dbAlias);

/* The API db2HistoryCloseScan ends the recovery history file scan and
frees DB2 resources required for the scan. */

db2HistoryCloseScan(db2Version810, &recoveryHistoryFileHandle, &sqlca);
DB2_API_CHECK("database recovery history file -- close");

/* free the allocated memory */
rc = HistoryEntryDataFieldsFree(&histEntryData);

return 0;
} /* DbRecoveryHistoryFileRead */

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 311

int HistoryEntryDataFieldsAlloc(struct db2HistoryData *pHistEntryData)
{

int rc = 0;
sqluint32 tsNb;

strcpy(pHistEntryData->ioHistDataID, "SQLUHINF");

pHistEntryData->oObjectPart.pioData = malloc(17 + 1);
pHistEntryData->oObjectPart.iLength = 17 + 1;

pHistEntryData->oEndTime.pioData = malloc(12 + 1);
pHistEntryData->oEndTime.iLength = 12 + 1;

pHistEntryData->oFirstLog.pioData = malloc(8 + 1);
pHistEntryData->oFirstLog.iLength = 8 + 1;

pHistEntryData->oLastLog.pioData = malloc(8 + 1);
pHistEntryData->oLastLog.iLength = 8 + 1;

pHistEntryData->oID.pioData = malloc(128 + 1);
pHistEntryData->oID.iLength = 128 + 1;

pHistEntryData->oTableQualifier.pioData = malloc(128 + 1);
pHistEntryData->oTableQualifier.iLength = 128 + 1;

pHistEntryData->oTableName.pioData = malloc(128 + 1);
pHistEntryData->oTableName.iLength = 128 + 1;

pHistEntryData->oLocation.pioData = malloc(128 + 1);
pHistEntryData->oLocation.iLength = 128 + 1;

pHistEntryData->oComment.pioData = malloc(128 + 1);
pHistEntryData->oComment.iLength = 128 + 1;

pHistEntryData->oCommandText.pioData = malloc(128 + 1);
pHistEntryData->oCommandText.iLength = 128 + 1;

pHistEntryData->poEventSQLCA =
(struct sqlca *)malloc(sizeof(struct sqlca));

pHistEntryData->poTablespace = (db2Char *)malloc(3 * sizeof(db2Char));
for (tsNb = 0; tsNb < 3; tsNb = tsNb + 1)
{

pHistEntryData->poTablespace[tsNb].pioData = malloc(18 + 1);
pHistEntryData->poTablespace[tsNb].iLength = 18 + 1;

}

pHistEntryData->iNumTablespaces = 3;

return 0;
} /* HistoryEntryDataFieldsAlloc */

int HistoryEntryDisplay(struct db2HistoryData histEntryData)
{

int rc = 0;

Sample Program with Embedded SQL (dbrecov.sqc)

312 Data Recovery and High Availability Guide and Reference

char buf[129];
sqluint32 tsNb;

memcpy(buf, histEntryData.oObjectPart.pioData,
histEntryData.oObjectPart.oLength);

buf[histEntryData.oObjectPart.oLength] = ’\0’;
printf(" object part: %s\n", buf);

memcpy(buf, histEntryData.oEndTime.pioData,
histEntryData.oEndTime.oLength);

buf[histEntryData.oEndTime.oLength] = ’\0’;
printf(" end time: %s\n", buf);

memcpy(buf, histEntryData.oFirstLog.pioData,
histEntryData.oFirstLog.oLength);

buf[histEntryData.oFirstLog.oLength] = ’\0’;
printf(" first log: %s\n", buf);

memcpy(buf, histEntryData.oLastLog.pioData,
histEntryData.oLastLog.oLength);

buf[histEntryData.oLastLog.oLength] = ’\0’;
printf(" last log: %s\n", buf);

memcpy(buf, histEntryData.oID.pioData, histEntryData.oID.oLength);
buf[histEntryData.oID.oLength] = ’\0’;
printf(" ID: %s\n", buf);

memcpy(buf, histEntryData.oTableQualifier.pioData,
histEntryData.oTableQualifier.oLength);

buf[histEntryData.oTableQualifier.oLength] = ’\0’;
printf(" table qualifier: %s\n", buf);

memcpy(buf, histEntryData.oTableName.pioData,
histEntryData.oTableName.oLength);

buf[histEntryData.oTableName.oLength] = ’\0’;
printf(" table name: %s\n", buf);

memcpy(buf, histEntryData.oLocation.pioData,
histEntryData.oLocation.oLength);

buf[histEntryData.oLocation.oLength] = ’\0’;
printf(" location: %s\n", buf);

memcpy(buf, histEntryData.oComment.pioData,
histEntryData.oComment.oLength);

buf[histEntryData.oComment.oLength] = ’\0’;
printf(" comment: %s\n", buf);

memcpy(buf, histEntryData.oCommandText.pioData,
histEntryData.oCommandText.oLength);

buf[histEntryData.oCommandText.oLength] = ’\0’;
printf(" command text: %s\n", buf);
printf(" history file entry ID: %u\n", histEntryData.oEID.ioHID);
printf(" table spaces:\n");

for (tsNb = 0; tsNb < histEntryData.oNumTablespaces; tsNb = tsNb + 1)

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 313

{
memcpy(buf, histEntryData.poTablespace[tsNb].pioData,

histEntryData.poTablespace[tsNb].oLength);
buf[histEntryData.poTablespace[tsNb].oLength] = ’\0’;
printf(" %s\n", buf);

}

printf(" type of operation: %c\n", histEntryData.oOperation);
printf(" granularity of the operation: %c\n", histEntryData.oObject);
printf(" operation type: %c\n", histEntryData.oOptype);
printf(" entry status: %c\n", histEntryData.oStatus);
printf(" device type: %c\n", histEntryData.oDeviceType);
printf(" SQLCA:\n");
printf(" sqlcode: %ld\n", histEntryData.poEventSQLCA->sqlcode);
memcpy(buf, histEntryData.poEventSQLCA->sqlstate, 5);
buf[5] = ’\0’;
printf(" sqlstate: %s\n", buf);
memcpy(buf, histEntryData.poEventSQLCA->sqlerrmc,

histEntryData.poEventSQLCA->sqlerrml);
buf[histEntryData.poEventSQLCA->sqlerrml] = ’\0’;
printf(" message: %s\n", buf);

return 0;
} /* HistoryEntryDisplay */

int HistoryEntryDataFieldsFree(struct db2HistoryData *pHistEntryData)
{

int rc = 0;
sqluint32 tsNb;

free(pHistEntryData->oObjectPart.pioData);
free(pHistEntryData->oEndTime.pioData);
free(pHistEntryData->oFirstLog.pioData);
free(pHistEntryData->oLastLog.pioData);
free(pHistEntryData->oID.pioData);
free(pHistEntryData->oTableQualifier.pioData);
free(pHistEntryData->oTableName.pioData);
free(pHistEntryData->oLocation.pioData);
free(pHistEntryData->oComment.pioData);
free(pHistEntryData->oCommandText.pioData);
free(pHistEntryData->poEventSQLCA);

for (tsNb = 0; tsNb < 3; tsNb = tsNb + 1)
{

free(pHistEntryData->poTablespace[tsNb].pioData);
}

free(pHistEntryData->poTablespace);

return 0;
} /* HistoryEntryDataFieldsFree */

int DbFirstRecoveryHistoryFileEntryUpdate(char dbAlias[],
char user[],
char pswd[])

Sample Program with Embedded SQL (dbrecov.sqc)

314 Data Recovery and High Availability Guide and Reference

{
int rc = 0;
struct sqlca sqlca;
struct db2HistoryOpenStruct dbHistoryOpenParam;
sqluint16 recoveryHistoryFileHandle;
struct db2HistoryGetEntryStruct dbHistoryEntryGetParam;
struct db2HistoryData histEntryData;
char newLocation[DB2HISTORY_LOCATION_SZ + 1];
char newComment[DB2HISTORY_COMMENT_SZ + 1];
struct db2HistoryUpdateStruct dbHistoryUpdateParam;

printf("\n***\n");
printf("*** UPDATE A DATABASE RECOVERY HISTORY FILE ENTRY ***\n");
printf("***\n");
printf("\nUSE THE DB2 APIs:\n");
printf(" db2HistoryOpenScan -- Open Recovery History File Scan\n");
printf(" db2HistoryGetEntry -- Get Next Recovery History File Entry\n");
printf(" db2HistoryUpdate -- Update Recovery History File\n");
printf(" db2HistoryCloseScan -- Close Recovery History File Scan\n");
printf("TO UPDATE A DATABASE RECOVERY HISTORY FILE ENTRY.\n");

/* initialize data structures */
dbHistoryOpenParam.piDatabaseAlias = dbAlias;
dbHistoryOpenParam.piTimestamp = NULL;
dbHistoryOpenParam.piObjectName = NULL;
dbHistoryOpenParam.iCallerAction = DB2HISTORY_LIST_HISTORY;
dbHistoryEntryGetParam.pioHistData = &histEntryData;
dbHistoryEntryGetParam.iCallerAction = DB2HISTORY_GET_ALL;
rc = HistoryEntryDataFieldsAlloc(&histEntryData);
if (rc != 0)
{

return rc;
}

/***/
/* OPEN THE DATABASE RECOVERY HISTORY FILE */
/***/
printf("\n Open the recovery history file for ’%s’ database.\n", dbAlias);

/* The API db2HistoryOpenScan starts a recovery history file scan */
db2HistoryOpenScan(db2Version810, &dbHistoryOpenParam, &sqlca);
DB2_API_CHECK("database recovery history file -- open");

/* dbHistoryOpenParam.oHandle returns the handle for scan access */
recoveryHistoryFileHandle = dbHistoryOpenParam.oHandle;
dbHistoryEntryGetParam.iHandle = recoveryHistoryFileHandle;

/***/
/* READ THE FIRST ENTRY IN THE RECOVERY HISTORY FILE */
/***/
printf("\n Read the first entry in the recovery history file.\n");

/* The API db2HistoryGetEntry gets the next entry from the recovery
history file. */

db2HistoryGetEntry(db2Version810, &dbHistoryEntryGetParam, &sqlca);

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 315

DB2_API_CHECK("first recovery history file entry -- read");
printf("\n Display the first entry.\n");

/* HistoryEntryDisplay is a support function used to display the entries
in the recovery history file. */

rc = HistoryEntryDisplay(histEntryData);

/* update the first history file entry */
rc = DbConn(dbAlias, user, pswd);
if (rc != 0)
{

return rc;
}

strcpy(newLocation, "this is the NEW LOCATION");
strcpy(newComment, "this is the NEW COMMENT");
printf("\n Update the first entry in the history file:\n");
printf(" new location = ’%s’\n", newLocation);
printf(" new comment = ’%s’\n", newComment);
dbHistoryUpdateParam.piNewLocation = newLocation;
dbHistoryUpdateParam.piNewDeviceType = NULL;
dbHistoryUpdateParam.piNewComment = newComment;
dbHistoryUpdateParam.iEID.ioNode = histEntryData.oEID.ioNode;
dbHistoryUpdateParam.iEID.ioHID = histEntryData.oEID.ioHID;

/* The API db2HistoryUpdate can be used to update the location,
device type, or comment in a history file entry. */

/* Call this API to update the location and comment of the first
entry in the history file: */

db2HistoryUpdate(db2Version810, &dbHistoryUpdateParam, &sqlca);
DB2_API_CHECK("first history file entry -- update");

rc = DbDisconn(dbAlias);
if (rc != 0)
{

return rc;
}

/**/
/* CLOSE THE DATABASE RECOVERY HISTORY FILE */
/**/
printf("\n Close recovery history file for ’%s’ database.\n", dbAlias);

/* The API db2HistoryCloseScan ends the recovery history file scan and
frees DB2 resources required for the scan. */

db2HistoryCloseScan(db2Version810, &recoveryHistoryFileHandle, &sqlca);
DB2_API_CHECK("database recovery history file -- close");

/**/
/* RE-OPEN THE DATABASE RECOVERY HISTORY FILE */
/**/
printf("\n Open the recovery history file for ’%s’ database.\n", dbAlias);

Sample Program with Embedded SQL (dbrecov.sqc)

316 Data Recovery and High Availability Guide and Reference

/* starts a recovery history file scan */
db2HistoryOpenScan(db2Version810, &dbHistoryOpenParam, &sqlca);
DB2_API_CHECK("database recovery history file -- open");

recoveryHistoryFileHandle = dbHistoryOpenParam.oHandle;

dbHistoryEntryGetParam.iHandle = recoveryHistoryFileHandle;
printf("\n Read the first recovery history file entry.\n");

/**/
/* READ THE FIRST ENTRY IN THE RECOVERY HISTORY FILE AFTER MODIFICATION */
/**/
db2HistoryGetEntry(db2Version810, &dbHistoryEntryGetParam, &sqlca);
DB2_API_CHECK("first recovery history file entry -- read");

printf("\n Display the first entry.\n");
rc = HistoryEntryDisplay(histEntryData);

/**/
/* CLOSE THE DATABASE RECOVERY HISTORY FILE */
/**/
printf("\n Close the recovery history file for ’%s’ database.\n",

dbAlias);

/* ends the recovery history file scan */
db2HistoryCloseScan(db2Version810, &recoveryHistoryFileHandle, &sqlca);
DB2_API_CHECK("database recovery history file -- close");

/* free the allocated memory */
rc = HistoryEntryDataFieldsFree(&histEntryData);

return 0;
} /* DbFirstRecoveryHistoryFileEntryUpdate */

int DbRecoveryHistoryFilePrune(char dbAlias[], char user[], char pswd[])
{

int rc = 0;
struct sqlca sqlca;
struct db2PruneStruct histPruneParam;
char timeStampPart[14 + 1];

printf("\n***************************************\n");
printf("*** PRUNE THE RECOVERY HISTORY FILE ***\n");
printf("***************************************\n");
printf("\nUSE THE DB2 API:\n");
printf(" db2Prune -- Prune Recovery History File\n");
printf("AND THE SQL STATEMENTS:\n");
printf(" CONNECT\n");
printf(" CONNECT RESET\n");
printf("TO PRUNE THE RECOVERY HISTORY FILE.\n");

/* Connect to the database: */
rc = DbConn(dbAlias, user, pswd);
if (rc != 0)
{

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Program 317

return rc;
}

/* Prune the recovery history file: */
printf("\n Prune the recovery history file for ’%s’ database.\n",

dbAlias);

/* timeStampPart is a pointer to a string specifying a time stamp or
log sequence number. Time stamp is used here to select records for
deletion. All entries equal to or less than the time stamp will be
deleted. */

histPruneParam.piString = timeStampPart;
strcpy(timeStampPart, "2010"); /* year 2010 */

/* The action DB2PRUNE_ACTION_HISTORY removes history file entries: */
histPruneParam.iAction = DB2PRUNE_ACTION_HISTORY;

/* The option DB2PRUNE_OPTION_FORCE forces the removal of the last backup: */
histPruneParam.iOptions = DB2PRUNE_OPTION_FORCE;

/* db2Prune can be called to delete entries from the recovery history file
or log files from the active log path. Here we call it to delete
entries from the recovery history file.
You must have SYSADM, SYSCTRL, SYSMAINT, or DBADM authority to prune
the recovery history file. */

db2Prune(db2Version810, &histPruneParam, &sqlca);
DB2_API_CHECK("recovery history file -- prune");

/* Disconnect from the database: */
rc = DbDisconn(dbAlias);
if (rc != 0)
{

return rc;
}

return 0;
} /* DbRecoveryHistoryFilePrune */

Sample Program with Embedded SQL (dbrecov.sqc)

318 Data Recovery and High Availability Guide and Reference

Appendix F. Tivoli Storage Manager

When calling the BACKUP DATABASE or RESTORE DATABASE commands,
you can specify that you want to use the Tivoli Storage Manager (TSM)
product to manage database or table space backup or restore operation. The
minimum required level of TSM client API is Version 4.2.0, except on a 64-bit
Solaris system which requires TSM client API Version 4.2.1.

Configuring a Tivoli Storage Manager Client

Before the database manager can use the TSM option, the following steps may
be required to configure the TSM environment:
1. A functioning TSM client and server must be installed and configured. In

addition, the TSM client API must be installed.
2. Set the environment variables used by the TSM client API:

DSMI_DIR Identifies the user-defined directory path where the API
trusted agent file (dsmtca) is located.

DSMI_CONFIG
Identifies the user-defined directory path to the dsm.opt
file, which contains the TSM user options. Unlike the other
two variables, this variable should contain a fully qualified
path and file name.

DSMI_LOG Identifies the user-defined directory path where the error
log (dsierror.log) will be created.

Note: In a multi-partition database environment these settings must be
specified in the sqllib/userprofile directory.

3. If any changes are made to these environment variables and the database
manager is running, you should:
v Stop the database manager using the db2stop command.
v Start the database manager using the db2start command.

4. Depending on the server’s configuration, a Tivoli client may require a
password to interface with a TSM server. If the TSM environment is
configured to use PASSWORDACCESS=generate, the Tivoli client needs to have
its password established.
The executable file dsmapipw is installed in the sqllib/adsm directory of the
instance owner. This executable allows you to establish and reset the TSM
password.

© Copyright IBM Corp. 2001, 2002 319

To execute the dsmapipw command, you must be logged in as the local
administrator or “root” user. When this command is executed, you will be
prompted for the following information:
v Old password, which is the current password for the TSM node, as

recognized by the TSM server. The first time you execute this command,
this password will be the one provided by the TSM administrator at the
time your node was registered on the TSM server.

v New password, which is the new password for the TSM node, stored at
the TSM server. (You will be prompted twice for the new password, to
check for input errors.)

Note: Users who invoke the BACKUP DATABASE or RESTORE
DATABASE commands do not need to know this password. You
only need to run the dsmapipw command to establish a password for
the initial connection, and after the password has been reset on the
TSM server.

Considerations for Using Tivoli Storage Manager
To use specific features within TSM, you may be required to give the fully
qualified path name of the object using the feature. (Remember that on
Windows operating systems, the \ will be used instead of /.) The fully
qualified path name of:
v A full database backup object is:

/<database>/NODEnnnn/FULL_BACKUP.timestamp.seq_no

v An incremental database backup object is:
/<database>/NODEnnnn/DB_INCR_BACKUP.timestamp.seq_no

v An incremental delta database backup object is_
/<database>/NODEnnnn/DB_DELTA_BACKUP.timestamp.seq_no

v A full table space backup object is:
/<database>/NODEnnnn/TSP_BACKUP.timestamp.seq_no

v An incremental table space backup object is:
/<database>/NODEnnnn/TSP_INCR_BACKUP.timestamp.seq_no

v An incremental delta table space backup object is:
/<database>/NODEnnnn/TSP_DELTA_BACKUP.timestamp.seq_no

where <database> is the database alias name, and NODEnnnn is the node
number. The names shown in uppercase characters must be entered as shown.
v In the case where you have multiple backup images using the same

database alias name, the time stamp and sequence number become the
distinguishing part of a fully qualified name. You will need to query TSM
to determine which backup version to use.

v Individual backup images are pooled into file spaces that TSM manages.
Individual backup images can only be manipulated through the TSM APIs,
or through db2adutl which uses these APIs.

320 Data Recovery and High Availability Guide and Reference

v The TSM server will time out a session if the Tivoli client does not respond
within the period of time specified by the COMMTIMEOUT parameter in the
server’s configuration file. Three factors can contribute to a timeout
problem:
– The COMMTIMEOUT parameter may be set too low at the TSM server. For

example, during a restore operation, a timeout can occur if large DMS
table spaces are being created. The recommended value for this
parameter is 6000 seconds.

– The DB2 backup or restore buffer may be too large.
– Database activity during an online backup operation may be too high.

v Use multiple sessions to increase throughput (only if sufficient hardware is
available on the TSM server).

Related concepts:

v “Managing Log Files” on page 45
v “Tivoli Space Manager Hierarchical Storage Manager (AIX)” in the Quick

Beginnings for Data Links Manager

Related reference:

v “db2adutl - Work with TSM Archived Images” on page 209

Appendix F. Tivoli Storage Manager 321

322 Data Recovery and High Availability Guide and Reference

Appendix G. User Exit for Database Recovery

You can develop a user exit program to automate log file archiving and
retrieval. Before invoking a user exit program for log file archiving or
retrieval, ensure that the userexit database configuration parameter has been
set to YES. This also enables your database for rollforward recovery.

When a user exit program is invoked, the database manager passes control to
the executable file, db2uext2. The database manager passes parameters to
db2uext2 and, on completion, the program passes a return code back to the
database manager. Because the database manager handles a limited set of
return conditions, the user exit program should be able to handle error
conditions (see “Error Handling” on page 325). And because only one user
exit program can be invoked within a database manager instance, it must
have a section for each of the operations it may be asked to perform.

The following topics are covered:
v “Sample User Exit Programs”
v “Calling Format” on page 324
v “Error Handling” on page 325

Sample User Exit Programs

Sample user exit programs are provided for all supported platforms. You can
modify these programs to suit your particular requirements. The sample
programs are well commented with information that will help you to use
them most effectively.

You should be aware that user exit programs must copy log files from the
active log path to the archive log path. Do not remove log files from the active
log path. (This could cause problems during database recovery.) DB2®

removes archived log files from the active log path when these log files are no
longer needed for recovery.

Following is a description of the sample user exit programs that are shipped
with DB2.
v UNIX® based systems

The user exit sample programs for DB2 for UNIX based systems are found
in the sqllib/samples/c subdirectory. Although the samples provided are
coded in C, your user exit program can be written in a different
programming language.
Your user exit program must be an executable file whose name is db2uext2.

© Copyright IBM Corp. 2001, 2002 323

There are four sample user exit programs for UNIX based systems:
– db2uext2.ctsm

This sample uses Tivoli® Storage Manager to archive and retrieve
database log files.

– db2uext2.ctape

This sample uses tape media to archive and retrieve database log files .
– db2uext2.cdisk

This sample uses the operating system COPY command and disk media
to archive and retrieve database log files.

– db2uxt2.cxbsa

This sample works with the XBSA Draft 0.8 published by the X/Open
group. It can be used to archive and retrieve database log files. This
sample is only supported on AIX.

v Windows® operating systems

The user exit sample programs for DB2 for Windows operating systems are
found in the sqllib\samples\c subdirectory. Although the samples
provided are coded in C, your user exit program can be written in a
different programming language.
Your user exit program must be an executable file whose name is db2uext2.
There are two sample user exit programs for Windows operating systems:
– db2uext2.ctsm

This sample uses Tivoli Storage Manager to archive and retrieve database
log files.

– db2uext2.cdisk

This sample uses the operating system COPY command and disk media
to archive and retrieve database log files.

Calling Format

When the database manager calls a user exit program, it passes a set of
parameters (of data type CHAR) to the program. The calling format is
dependent on your operating system:

db2uext2 -OS<os> -RL<db2rel> -RQ<request> -DB<dbname>
-NN<nodenum> -LP<logpath> -LN<logname> -AP<tsmpasswd>
-SP<startpage> -LS<logsize>

os Specifies the platform on which the instance is running. Valid
values are: AIX®, Solaris, HP-UX, SCO, Linux, and NT.

db2rel Specifies the DB2 release level. For example, SQL07020.

request Specifies a request type. Valid values are: ARCHIVE and
RETRIEVE.

324 Data Recovery and High Availability Guide and Reference

dbname Specifies a database name.

nodenum Specifies the local node number, such as 5, for example.

logpath Specifies the fully qualified path to the log files. The path
must contain the trailing path separator. For example,
/u/database/log/path/, or d:\logpath\.

logname Specifies the name of the log file that is to be archived or
retrieved, such as S0000123.LOG, for example.

tsmpasswd Specifies the TSM password. (If a value for the database
configuration parameter tsm_password has previously been
specified, that value is passed to the user exit program.)

startpage Specifies the number of 4-KB offset pages of the device at
which the log extent starts.

logsize Specifies the size of the log extent, in 4-KB pages. This
parameter is only valid if a raw device is used for logging.

Error Handling

Your user exit program should be designed to provide specific and
meaningful return codes, so that the database manager can interpret them
correctly. Because the user exit program is called by the underlying operating
system command processor, the operating system itself could return error
codes. And because these error codes are not remapped, use the operating
system message help utility to obtain information about them.

Table 8 shows the codes that can be returned by a user exit program, and
describes how these codes are interpreted by the database manager. If a return
code is not listed in the table, it is treated as if its value were 32.

Table 8. User Exit Program Return Codes. Applies to archiving and retrieval
operations only.

Return Code Explanation

0 Successful.

4 Temporary resource error encountered.a

8 Operator intervention is required.a

12 Hardware error.b

16 Error with the user exit program or a software function used by the
program.b

20 Error with one or more of the parameters passed to the user exit
program. Verify that the user exit program is correctly processing the
specified parameters.b

24 The user exit program was not found. b

Appendix G. User Exit for Database Recovery 325

Table 8. User Exit Program Return Codes (continued). Applies to archiving and
retrieval operations only.

Return Code Explanation

28 Error caused by an input/output (I/O) failure, or by the operating
system.b

32 The user exit program was terminated by the user.b

255 Error caused by the user exit program not being able to load the
library file for the executable.c

a For archiving or retrieval requests, a return code of 4 or 8 causes a retry in five
minutes. If the user exit program continues to return 4 or 8 on retrieve requests for
the same log file, DB2 will continue to retry until successful. (This applies to
rollforward operations, or calls to the db2ReadLog API, which is used by the
replication utility.)

b User exit requests are suspended for five minutes. During this time, all requests are
ignored, including the request that caused the error condition. Following this
five-minute suspension, the next request is processed. If this request is processed
without error, processing of new user exit requests continues, and DB2 reissues the
archive request that failed or was suspended previously. If a return code greater than
8 is generated during the retry, requests are suspended for an additional five minutes.
The five-minute suspensions continue until the problem is corrected, or the database
is stopped and restarted. Once all applications have disconnected from the database,
DB2 issues an archive request for any log file that may not have been successfully
archived previously. If the user exit program fails to archive log files, your disk may
become filled with log files, and performance may be degraded. Once the disk
becomes full, the database manager will not accept further application requests for
database updates. If the user exit program was called to retrieve log files, rollforward
recovery is suspended, but not stopped, unless the ROLLFORWARD STOP option
was specified. If the STOP option was not specified, you can correct the problem and
resume recovery.

c If the user exit program returns error code 255, it is likely that the program cannot
load the library file for the executable. To verify this, manually invoke the user exit
program. More information is displayed.

Note: During archiving and retrieval operations, an alert message is issued for all
return codes except 0, and 4. The alert message contains the return code from the
user exit program, and a copy of the input parameters that were provided to the user
exit program.

326 Data Recovery and High Availability Guide and Reference

Appendix H. Backup and Restore APIs for Vendor Products

Backup and Restore APIs for Vendor Products

DB2 provides interfaces that can be used by third-party media management
products to store and retrieve data for backup and restore operations. This
function is designed to augment the backup and restore data targets of
diskette, disk, tape, and Tivoli Storage Manager, that are supported as a
standard part of DB2.

These third-party media management products will be referred to as vendor
products in the remainder of this appendix.

DB2 defines a set of function prototypes that provide a general purpose data
interface to backup and restore that can be used by many vendors. These
functions are to be provided by the vendor in a shared library on UNIX based
systems, or DLL on the Windows operating system. When the functions are
invoked by DB2, the shared library or DLL specified by the calling backup or
restore routine is loaded and the functions provided by the vendor are called
to perform the required tasks.

This appendix is divided into four parts:
v Operational overview of DB2’s interaction with vendor products.
v Detailed descriptions of DB2’s vendor APIs.
v Details on invoking backup and restore using vendor products.
v Information on the data structures used in the API calls.

Operational Overview
Five functions are defined to interface DB2 and the vendor product:
v sqluvint - Initialize and Link to Device
v sqluvget - Reading Data from Device
v sqluvput - Writing Data to Device
v sqluvend - Unlink the Device
v sqluvdel - Delete Committed Session

DB2 will call these functions, and they should be provided by the vendor
product in a shared library on UNIX based systems, or in a DLL on the
Windows operating system.

© Copyright IBM Corp. 2001, 2002 327

Note: The shared library or DLL code will be run as part of the database
engine code. Therefore, it must be reentrant and thoroughly debugged.
An errant function may compromise data integrity of the database.

The sequence of functions that DB2 will call during a specific backup or
restore operation depends on:
v The number of sessions that will be utilized.
v Whether it is a backup or a restore operation.
v The PROMPTING mode that is specified on the backup or restore

operation.
v The characteristics of the device on which the data is stored.
v The errors that may be encountered during the operation.

Number of Sessions
DB2 supports the backup and restore of database objects using one or more
data streams or sessions. A backup or restore using three sessions would
require three physical or logical devices to be available. When vendor device
support is being used, it is the vendor’s functions that are responsible for
managing the interface to each physical or logical device. DB2 simply sends or
receives data buffers to or from the vendor provided functions.

The number of sessions to be used is specified as a parameter by the
application that calls the backup or restore database function. This value is
provided in the INIT-INPUT structure used by sqluvint .

DB2 will continue to initialize sessions until the specified number is reached,
or it receives an SQLUV_MAX_LINK_GRANT warning return code from an
sqluvint call. In order to warn DB2 that it has reached the maximum number
of sessions that it can support, the vendor product will require code to track
the number of active sessions. Failure to warn DB2 could lead to a DB2
initialize session request that fails, resulting in a termination of all sessions
and the failure of the entire backup or restore operation.

When the operation is backup, DB2 writes a media header record at the
beginning of each session. The record contains information that DB2 uses to
identify the session during a restore operation. DB2 uniquely identifies each
session by appending a sequence number to the name of the backup image.
The number starts at one for the first session, and is incremented by one each
time another session is initiated with an sqluvint call for a backup or a restore
operation.

When the backup operation completes successfully, DB2 writes a media trailer
to the last session it closes. This trailer includes information that tells DB2

Backup and Restore APIs for Vendor Products

328 Data Recovery and High Availability Guide and Reference

how many sessions were used to perform the backup operation. During a
restore operation, this information is used to ensure all the sessions, or data
streams, have been restored.

Operation with No Errors, Warnings or Prompting
For backup, the following sequence of calls is issued by DB2 for each session.

sqluvint, action = SQLUV_WRITE

followed by 1 to n
sqluvput

followed by 1
sqluvend, action = SQLUV_COMMIT

When DB2 issues an sqluvend call (action SQLUV_COMMIT), it expects the
vendor product to appropriately save the output data. A return code of
SQLUV_OK to DB2 indicates success.

The DB2-INFO structure, used on the sqluvint call, contains the information
required to identify the backup. A sequence number is supplied. The vendor
product may choose to save this information. DB2 will use it during restore to
identify the backup that will be restored.

For restore, the sequence of calls for each session is:
sqluvint, action = SQLUV_READ

followed by 1 to n
sqluvget

followed by 1
sqluvend, action = SQLUV_COMMIT

The information in the DB2-INFO structure used on the sqluvint call will
contain the information required to identify the backup. A sequence number is
not supplied. DB2 expects that all backup objects (session outputs committed
during a backup) will be returned. The first backup object returned is the
object generated with sequence number 1, and all other objects are restored in
no specific order. DB2 checks the media tail to ensure that all objects have
been processed.

Note: Not all vendor products will keep a record of the names of the backup
objects. This is most likely when the backups are being done to tapes,
or other media of limited capacity. During the initialization of restore
sessions, the identification information can be utilized to stage the
necessary backup objects so that they are available when required; this

Backup and Restore APIs for Vendor Products

Appendix H. Backup and Restore APIs for Vendor Products 329

may be most useful when juke boxes or robotic systems are used to
store the backups. DB2 will always check the media header (first record
in each session’s output) to ensure that the correct data is being
restored.

PROMPTING Mode
When a backup or a restore operation is initiated, two prompting modes are
possible:
v WITHOUT PROMPTING or NOINTERRUPT, where there is no opportunity

for the vendor product to write messages to the user, or for the user to
respond to them.

v PROMPTING or INTERRUPT, where the user can receive and respond to
messages from the vendor product.

For PROMPTING mode, backup and restore define three possible user
responses:
v Continue

The operation of reading or writing data to the device will resume.
v Device terminate

The device will receive no additional data, and the session is terminated.
v Terminate

The entire backup or restore operation is terminated.

The use of the PROMPTING and WITHOUT PROMPTING modes is
discussed in the sections that follow.

Device Characteristics
For purposes of the vendor device support APIs, two general types of devices
are defined:
v Limited capacity devices requiring user action to change the media; for

example, a tape drive, diskette, or CDROM drive.
v Very large capacity devices, where normal operations do not require the

user to handle media; for example, a juke box, or an intelligent robotic
media handling device.

A limited capacity device may require that the user be prompted to load
additional media during the backup or restore operation. Generally DB2 is not
sensitive to the order in which the media is loaded for either backup or
restore operations. It also provides facilities to pass vendor media handling
messages to the user. This prompting requires that the backup or restore
operation be initiated with PROMPTING on. The media handling message
text is specified in the description field of the return code structure.

Backup and Restore APIs for Vendor Products

330 Data Recovery and High Availability Guide and Reference

If PROMPTING is on, and DB2 receives an SQLUV_ENDOFMEDIA or an
SQLUV_ENDOFMEDIA_NO_DATA return code from a sqluvput (write) or a
sqluvget (read) call, DB2:
v Marks the last buffer sent to the session to be resent, if the call was

sqluvput. It will be put to a session later.
v Calls the session with sqluvend (action = SQLUV_COMMIT). If successful

(SQLUV_OK return code), DB2:
– Sends a vendor media handling message to the user from the return

code structure that signaled the end-of-media condition.
– Prompts the user for a continue, device terminate, or terminate response.

v If the response is continue, DB2 initializes another session using the sqluvint
call, and if successful, begins writing data to or reading data from the
session. To uniquely identify the session when writing, DB2 increments the
sequence number. The sequence number is available in the DB2-INFO
structure used with sqluvint, and is in the media header record, which is
the first data record sent to the session.
DB2 will not start more sessions than requested when a backup or a restore
operation is started, or indicated by the vendor product with a
SQLUV_MAX_LINK_GRANT warning on an sqluvint call.

v If the response is device terminate, DB2 does not attempt to initialize another
session, and the number of active sessions is reduced by one. DB2 does not
allow all sessions to be terminated by device terminate responses; at least
one session must be kept active until the backup or the restore operation
completes.

v If the response is terminate, DB2 terminates the backup or the restore
operation. For more information on exactly what DB2 does to terminate the
sessions, see “If Error Conditions Are Returned to DB2” on page 332.

Because backup or restore performance is often dependent on the number of
devices being used, it is important that parallelism be maintained. For backup
operations, users are encouraged to respond with a continue, unless they
know that the remaining active sessions will hold the data that is still to be
written out. For restore operations, users are also encouraged to respond with
a continue until all media have been processed.

If the backup or the restore mode is WITHOUT PROMPTING, and DB2
receives an SQLUV_ENDOFMEDIA or an SQLUV_ENDOFMEDIA_NO_DATA
return code from a session, it will terminate the session and not attempt to
open another session. If all sessions return end-of-media to DB2 before the
backup or the restore operation is complete, the operation will fail. Because of
this, WITHOUT PROMPTING should be used carefully with limited capacity
devices; it does, however, make sense to operate in this mode with very large
capacity devices.

Backup and Restore APIs for Vendor Products

Appendix H. Backup and Restore APIs for Vendor Products 331

It is possible for the vendor product to hide media mounting and switching
actions from DB2, so that the device appears to have infinite capacity. Some
very large capacity devices operate in this mode. In these cases, it is critical
that all the data that was backed up be returned to DB2 in the same order
when a restore operation is in progress. Failure to do so could result in
missing data, but DB2 assumes a successful restore operation, because it has
no way of detecting the missing data.

DB2 writes data to the vendor product with the assumption that each buffer
will be contained on one and only one media (for example, a tape). It is
possible for the vendor product to split these buffers across multiple media
without DB2’s knowledge. In this case, the order in which the media is
processed during a restore operation is critical, because the vendor product
will be responsible for returning reconstructed buffers from the multiple
media to DB2. Failure to do so will result in a failed restore operation.

If Error Conditions Are Returned to DB2
When performing a backup or a restore operation, DB2 expects that all
sessions will complete successfully; otherwise, the entire backup or restore
operation fails. A session signals successful completion to DB2 with an
SQLUV_OK return code on the sqluvend call, action = SQLUV_COMMIT.

If unrecoverable errors are encountered, the session is terminated by DB2.
These can be DB2 errors, or errors returned to DB2 from the vendor product.
Because all sessions must commit successfully to have a complete backup or
restore operation, the failure of one causes DB2 to terminate the other sessions
associated with the operation.

If the vendor product responds to a call from DB2 with an unrecoverable
return code, the vendor product can optionally provide additional
information, using message text placed in the description field of the
RETURN-CODE structure. This message text is presented to the user, along
with the DB2 information, so that corrective action can be taken.

There will be backup scenarios in which a session has committed successfully,
and another session associated with the backup operation experiences an
unrecoverable error. Because all sessions must complete successfully before a
backup operation is considered successful, DB2 must delete the output data in
the committed sessions: DB2 issues a sqluvdel call to request deletion of the
object. This call is not considered an I/O session, and is responsible for
initializing and terminating any connection that may be necessary to delete
the backup object.

The DB2-INFO structure will not contain a sequence number; sqluvdel will
delete all backup objects that match the remaining parameters in the
DB2-INFO structure.

Backup and Restore APIs for Vendor Products

332 Data Recovery and High Availability Guide and Reference

Warning Conditions
It is possible for DB2 to receive warning return codes from the vendor
product; for example, if a device is not ready, or some other correctable
condition has occurred. This is true for both read and write operations.

On sqluvput and sqluvget calls, the vendor can set the return code to
SQLUV_WARNING, and optionally provide additional information, using
message text placed in the description field of the RETURN-CODE structure.
This message text is presented to the user so that corrective action can be
taken. The user can respond in one of three ways: continue, device terminate,
or terminate:
v If the response is continue, DB2 attempts to rewrite the buffer using

sqluvput during a backup operation. During a restore operation, DB2 issues
an sqluvget call to read the next buffer.

v If the response is device terminate or terminate, DB2 terminates the entire
backup or restore operation in the same way that it would respond after an
unrecoverable error (for example, it will terminate active sessions and
delete committed sessions).

Operational Hints and Tips
This section provides some hints and tips for building vendor products.

History File
The history file can be used as an aid in database recovery operations. It is
associated with each database, and is automatically updated with each backup
or restore operation. Information in the file can be viewed, updated, or
pruned through the following facilities:
v Control Center
v Command line processor (CLP)

– LIST HISTORY command
– UPDATE HISTORY FILE command
– PRUNE HISTORY command

v APIs
– db2HistoryOpenScan
– db2HistoryGetEntry
– db2HistoryCloseScan
– db2HistoryUpdate
– db2Prune

For information about the layout of the file, see db2HistData.

Backup and Restore APIs for Vendor Products

Appendix H. Backup and Restore APIs for Vendor Products 333

When a backup operation completes, one or more records is written to the
file. If the output of the backup operation was directed to vendor devices, the
DEVICE field in the history record contains a O, and the LOCATION field
contains either:
v The vendor file name specified when the backup operation was invoked.
v The name of the shared library, if no vendor file name was specified.

For more information about specifying this option, see “Invoking a Backup or
a Restore Operation Using Vendor Products”.

The LOCATION field can be updated using the Control Center, the CLP, or an
API. The location of backup information can be updated if limited capacity
devices (for example, removable media) have been used to hold the backup
image, and the media is physically moved to a different (perhaps off-site)
storage location. If this is the case, the history file can be used to help locate a
backup image if a recovery operation becomes necessary.

Invoking a Backup or a Restore Operation Using Vendor Products
Vendor products can be specified when invoking the DB2 backup or the DB2
restore utility from:
v The Control Center
v The command line processor (CLP)
v An application programming interface (API).

The Control Center
The Control Center is the graphical user interface for database administration
that is shipped with DB2.

To specify The Control Center input variable for
backup or restore operations

Use of vendor device and library name Is Use Library. Specify the library name
(on UNIX based systems) or the DLL
name (on the Windows operating system).

Number of sessions Is Sessions.

Vendor options Is not supported.

Vendor file name Is not supported.

Transfer buffer size Is (for backup) Size of each Buffer, and (for
restore) not applicable.

The Command Line Processor (CLP)
The command line processor (CLP) can be used to invoke the DB2 BACKUP
DATABASE or the RESTORE DATABASE command.

Backup and Restore APIs for Vendor Products

334 Data Recovery and High Availability Guide and Reference

To specify The command line processor parameter

for backup is for restore is

Use of vendor device and
library name

library-name shared-library

Number of sessions num-sessions num-sessions

Vendor options not supported not supported

Vendor file name not supported not supported

Transfer buffer size buffer-size buffer-size

Application Programming Interface (API)
Two API function calls support backup and restore operations: db2Backup for
backup and db2Restore for restore.

To specify The API parameter (for both db2Backup
and db2Restore) is

Use of vendor device and library name as follows: In structure sqlu_media_list,
specify a media type of
SQLU_OTHER_MEDIA, and then in
structure sqlu_vendor, specify a shared
library or DLL in shr_lib.

Number of sessions as follows: In structure sqlu_media_list,
specify sessions.

Vendor options PVendorOptions

Vendor file name as follows: In structure sqlu_media_list,
specify a media type of
SQLU_OTHER_MEDIA, and then in
structure sqlu_vendor, specify a file name
in filename.

Transfer buffer size BufferSize

Related reference:

v “sqluvint - Initialize and Link to Device” on page 336
v “sqluvget - Reading Data from Device” on page 339
v “sqluvput - Writing Data to Device” on page 341
v “sqluvend - Unlink the Device and Release its Resources” on page 343
v “sqluvdel - Delete Committed Session” on page 346
v “DB2-INFO” on page 347
v “VENDOR-INFO” on page 350
v “INIT-INPUT” on page 351

Backup and Restore APIs for Vendor Products

Appendix H. Backup and Restore APIs for Vendor Products 335

v “INIT-OUTPUT” on page 353
v “DATA” on page 353
v “RETURN-CODE” on page 354

sqluvint - Initialize and Link to Device

This function is called to provide information for initialization and
establishment of a logical link between DB2 and the vendor device.

Authorization:

One of the following:
v sysadm

v dbadm

Required connection:

Database

API include file:

sql.h

C API syntax:

API parameters:

Init_input
Input. Structure that contains information provided by DB2 to
establish a logical link with the vendor device.

Init_output
Output. Structure that contains the output returned by the vendor
device.

Return_code
Output. Structure that contains the return code to be passed to DB2,
and a brief text explanation.

/* File: sqluvend.h */
/* API: Initialize and Link to Device */
/* ... */
int sqluvint (

struct Init_input *,
struct Init_output *,
struct Return_code *);

/* ... */

Backup and Restore APIs for Vendor Products

336 Data Recovery and High Availability Guide and Reference

Usage notes:

For each media I/O session, DB2 will call this function to obtain a device
handle. If for any reason, the vendor function encounters an error during
initialization, it will indicate it via a return code. If the return code indicates
an error, DB2 may choose to terminate the operation by calling the sqluvend
function. Details on possible return codes, and the DB2 reaction to each of
these, is contained in the return codes table (see Table 9 on page 338).

The INIT-INPUT structure contains elements that can be used by the vendor
product to determine if the backup or restore can proceed:
v size_HI_order and size_LOW_order

This is the estimated size of the backup. They can be used to determine if
the vendor devices can handle the size of the backup image. They can be
used to estimate the quantity of removable media that will be required to
hold the backup. It might be beneficial to fail at the first sqluvint call if
problems are anticipated.

v req_sessions
The number of user requested sessions can be used in conjunction with the
estimated size and the prompting level to determine if the backup or
restore operation is possible.

v prompt_lvl
The prompting level indicates to the vendor if it is possible to prompt for
actions such as changing removable media (for example, put another tape
in the tape drive). This might suggest that the operation cannot proceed
since there will be no way to prompt the user.
If the prompting level is WITHOUT PROMPTING and the quantity of
removable media is greater than the number of sessions requested, DB2 will
not be able to complete the operation successfully.

DB2 names the backup being written or the restore to be read via fields in the
DB2-INFO structure. In the case of an action = SQLUV_READ, the vendor
product must check for the existence of the named object. If it cannot be
found, the return code should be set to SQLUV_OBJ_NOT_FOUND so that
DB2 will take the appropriate action.

After initialization is completed successfully, DB2 will continue by issuing
other data transfer functions, but may terminate the session at any time with
an sqluvend call.

Return codes:

sqluvint - Initialize and Link to Device

Appendix H. Backup and Restore APIs for Vendor Products 337

Table 9. Valid Return Codes for sqluvint and Resulting DB2 Action
Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvput, sqluvget (see
comments)

If action = SQLUV_WRITE, the next call will be
sqluvput (to BACKUP data). If action =
SQLUV_READ, verify the existence of the named
object prior to returning SQLUV_OK; the next call
will be sqluvget to RESTORE data.

SQLUV_LINK_EXIST Session activated
previously.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_COMM_ ERROR Communication error
with device.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_VERSION The DB2 and vendor
products are
incompatible.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_ACTION Invalid action is
requested. This could
also be used to indicate
that the combination of
parameters results in an
operation which is not
possible.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_NO_DEV_
AVAIL

No device is available for
use at the moment.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_OBJ_NOT_
FOUND

Object specified cannot
be found. This should be
used when the action on
the sqluvint call is ’R’
(read) and the requested
object cannot be found
based on the criteria
specified in the
DB2-INFO structure.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_OBJS_FOUND More than 1 object
matches the specified
criteria. This will result
when the action on the
sqluvint call is ’R’ (read)
and more than one object
matches the criteria in
the DB2-INFO structure.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_USERID Invalid userid specified. no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_
PASSWORD

Invalid password
provided.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

sqluvint - Initialize and Link to Device

338 Data Recovery and High Availability Guide and Reference

Table 9. Valid Return Codes for sqluvint and Resulting DB2 Action (continued)
Literal in Header File Description Probable Next Call Other Comments

SQLUV_INV_OPTIONS Invalid options
encountered in the
vendor options field.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INIT_FAILED Initialization failed and
the session is to be
terminated.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_DEV_ERROR Device error. no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_MAX_LINK_
GRANT

Max number of links
established.

sqluvput, sqluvget (see
comments)

This is treated as a warning by DB2. The warning
tells DB2 not to open additional sessions with the
vendor product, because the maximum number of
sessions it can support has been reached (note: this
could be due to device availability). If action =
SQLUV_WRITE (BACKUP), the next call will be
sqluvput. If action = SQLUV_READ, verify the
existence of the named object prior to returning
SQLUV_MAX_LINK_GRANT; the next call will be
sqluvget to RESTORE data.

SQLUV_IO_ERROR I/O error. no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_NOT_
ENOUGH_SPACE

There is not enough
space to store the entire
backup image; the size
estimate is provided as a
64-bit value in bytes.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

sqluvget - Reading Data from Device

After initialization, this function can be called to read data from the device.

Authorization:

One of the following:
v sysadm

v dbadm

Required connection:

Database

API include file:

sqluvend.h

sqluvint - Initialize and Link to Device

Appendix H. Backup and Restore APIs for Vendor Products 339

C API syntax:

API parameters:

pVendorCB
Input. Pointer to space allocated for the DATA structure (including the
data buffer) and Return_code.

Data Input/output. A pointer to the data structure.

Return_code
Output. The return code from the API call.

obj_num
Specifies which backup object should be retrieved.

buff_size
Specifies the buffer size to be used.

actual_buff_size
Specifies the actual bytes read or written. This value should be set to
output to indicate how many bytes of data were actually read.

dataptr
A pointer to the data buffer.

reserve
Reserved for future use.

Usage notes:

This function is used by the restore utility.

Return codes:

/* File: sqluvend.h */
/* API: Reading Data from Device */
/* ... */
int sqluvget (

void * pVendorCB,
struct Data *,
struct Return_code *);

/* ... */

typedef struct Data
}

sqlint32 obj_num;
sqlint32 buff_size;
sqlint32 actual_buff_size;
void *dataptr;
void *reserve;

{ Data;

sqluvget - Reading Data from Device

340 Data Recovery and High Availability Guide and Reference

Table 10. Valid Return Codes for sqluvget and Resulting DB2 Action
Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvget DB2 processes the data

SQLUV_COMM_ERROR Communication error with
device.

sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_ACTION Invalid action is requested. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_DEV_HANDLE Invalid device handle. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_BUFF_SIZE Invalid buffer size specified. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_DEV_ERROR Device error. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_WARNING Warning. This should not be
used to indicate end-of-media
to DB2; use
SQLUV_ENDOFMEDIA or
SQLUV_ENDOFMEDIA_NO_
DATA for this purpose.
However, device not ready
conditions can be indicated
using this return code.

sqluvget, or sqluvend, action =
SQLU_ABORT

SQLUV_LINK_NOT_EXIST No link currently exists. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_MORE_DATA Operation successful; more data
available.

sqluvget

SQLUV_ENDOFMEDIA_NO_
DATA

End of media and 0 bytes read
(for example, end of tape).

sqluvend

SQLUV_ENDOFMEDIA End of media and > 0 bytes
read, (for example, end of
tape).

sqluvend DB2 processes the data, and
then handles the end-of-media
condition.

SQLUV_IO_ERROR I/O error. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

Next call:

a If the next call is an sqluvend, action = SQLU_ABORT, this session and all other active sessions will be terminated.

sqluvput - Writing Data to Device

After initialization, this function can be used to write data to the device.

Authorization:

One of the following:
v sysadm

v dbadm

Required connection:

sqluvget - Reading Data from Device

Appendix H. Backup and Restore APIs for Vendor Products 341

Database

API include file:

sqluvend.h

C API syntax:

API parameters:

pVendorCB
Input. Pointer to space allocated for the DATA structure (including the
data buffer) and Return_code.

Data Output. Data buffer filled with data to be written out.

Return_code
Output. The return code from the API call.

obj_num
Specifies which backup object should be retrieved.

buff_size
Specifies the buffer size to be used.

actual_buff_size
Specifies the actual bytes read or written. This value should be set to
indicate how many bytes of data were actually read.

dataptr
A pointer to the data buffer.

reserve
Reserved for future use.

/* File: sqluvend.h */
/* API: Writing Data to Device */
/* ... */
int sqluvput (

void * pVendorCB,
struct Data *,
struct Return_code *);

/* ... */

typedef struct Data
}

sqlint32 obj_num;
sqlint32 buff_size;
sqlint32 actual_buff_size;
void *dataptr;
void *reserve;

{ Data;

sqluvput - Writing Data to Device

342 Data Recovery and High Availability Guide and Reference

Usage notes:

This function is used by the backup utility.

Return codes:

Table 11. Valid Return Codes for sqluvput and Resulting DB2 Action
Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvput or sqluvend, if
complete (for example, DB2 has
no more data)

Inform other processes of
successful operation.

SQLUV_COMM_ERROR Communication error with
device.

sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_ACTION Invalid action is requested. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_DEV_HANDLE Invalid device handle. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_BUFF_SIZE Invalid buffer size specified. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_ENDOFMEDIA End of media reached, for
example, end of tape.

sqluvend

SQLUV_DATA_RESEND Device requested to have buffer
sent again.

sqluvput DB2 will retransmit the last
buffer. This will only be done
once.

SQLUV_DEV_ERROR Device error. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_WARNING Warning. This should not be
used to indicate end-of-media
to DB2; use
SQLUV_ENDOFMEDIA for this
purpose. However, device not
ready conditions can be
indicated using this return
code.

sqluvput

SQLUV_LINK_NOT_EXIST No link currently exists. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_IO_ERROR I/O error. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

Next call:

a If the next call is an sqluvend, action = SQLU_ABORT, this session and all other active sessions will be terminated. Committed
sessions are deleted with an sqluvint, sqluvdel, and sqluvend sequence of calls.

sqluvend - Unlink the Device and Release its Resources

Ends or unlinks the device, and frees all of its related resources. The vendor
must free or release unused resources (for example, allocated space and file
handles) before returning to DB2.

Authorization:

sqluvput - Writing Data to Device

Appendix H. Backup and Restore APIs for Vendor Products 343

One of the following:
v sysadm

v dbadm

Required connection:

Database

API include file:

sql.h

C API syntax:

API parameters:

action Input. Used to commit or abort the session:
v SQLUV_COMMIT (0 = to commit)
v SQLUV_ABORT (1 = to abort)

pVendorCB
Input. Pointer to the Init_output structure.

Init_output
Output. Space for Init_output de-allocated. The data has been
committed to stable storage for a backup if action is to commit. The
data is purged for a backup if the action is to abort.

Return code
Output. The return code from the API call.

Usage notes:

This function is called for each session that has been opened. There are two
possible action codes:
v Commit

Output of data to this session, or the reading of data from the session, is
complete.

/* File: sqluvend.h */
/* API: Unlink the Device and Release its Resources */
/* ... */
int sqluvend (

sqlint32 action,
void * pVendorCB,
struct Init_output *,
struct Return_code *);

/* ... */

sqluvend - Unlink Device and Release Resources

344 Data Recovery and High Availability Guide and Reference

For a write (backup) session, if the vendor returns to DB2 with a return
code of SQLUV_OK, DB2 assumes that the output data has been
appropriately saved by the vendor product, and can be accessed if
referenced in a later sqluvint call.
For a read (restore) session, if the vendor returns to DB2 with a return code
of SQLUV_OK, the data should not be deleted, because it may be needed
again.
If the vendor returns SQLUV_COMMIT_FAILED, DB2 assumes that there
are problems with the entire backup or restore operation. All active sessions
are terminated by sqluvend calls with action = SQLUV_ABORT. For a
backup operation, committed sessions receive a sqluvint, sqluvdel, and
sqluvend sequence of calls.

v Abort
A problem has been encountered by DB2, and there will be no more
reading or writing of data to the session.
For a write (backup) session, the vendor should delete the partial output
dataset, and use a SQLUV_OK return code if the partial output is deleted.
DB2 assumes that there are problems with the entire backup. All active
sessions are terminated by sqluvend calls with action = SQLUV_ABORT,
and committed sessions receive a sqluvint, sqluvdel, and sqluvend
sequence of calls.
For a read (restore) session, the vendor should not delete the data (because
it may be needed again), but should clean up and return to DB2 with a
SQLUV_OK return code. DB2 terminates all the restore sessions by
sqluvend calls with action = SQLUV_ABORT. If the vendor returns
SQLUV_ABORT_FAILED to DB2, the caller is not notified of this error,
because DB2 returns the first fatal failure and ignores subsequent failures.
In this case, for DB2 to have called sqluvend with action =
SQLUV_ABORT, an initial fatal error must have occurred.

Return codes:

Table 12. Valid Return Codes for sqluvend and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. no further calls Free all memory allocated
for this session and
terminate.

SQLUV_COMMIT_FAILED Commit request failed. no further calls Free all memory allocated
for this session and
terminate.

SQLUV_ABORT_FAILED Abort request failed. no further calls

sqluvend - Unlink Device and Release Resources

Appendix H. Backup and Restore APIs for Vendor Products 345

sqluvdel - Delete Committed Session

Deletes committed sessions.

Authorization:

One of the following:
v sysadm

v dbadm

Required connection:

Database

API include file:

sqluvend.h

C API syntax:

API parameters:

Init_input
Input. Space allocated for Init_input and Return_code.

Return_code
Output. Return code from the API call. The object pointed to by the
Init_input structure is deleted.

Usage notes:

If multiple sessions are opened, and some sessions are committed, but one of
them fails, this function is called to delete the committed sessions. No
sequence number is specified; sqluvdel is responsible for finding all of the
objects that were created during a particular backup operation, and deleting
them. Information in the INIT-INPUT structure is used to identify the output
data to be deleted. The call to sqluvdel is responsible for establishing any
connection or session that is required to delete a backup object from the

/* File: sqluvend.h */
/* API: Delete Committed Session */
/* ... */
int sqluvdel (

struct Init_input *,
struct Init_output *,
struct Return_code *);

/* ... */

sqluvdel - Delete Committed Session

346 Data Recovery and High Availability Guide and Reference

vendor device. If the return code from this call is SQLUV_DELETE_FAILED,
DB2 does not notify the caller, because DB2 returns the first fatal failure and
ignores subsequent failures. In this case, for DB2 to have called sqluvdel, an
initial fatal error must have occurred.

Return codes:

Table 13. Valid Return Codes for sqluvdel and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. no further calls

SQLUV_DELETE_FAILED Delete request failed. no further calls

DB2-INFO

This structure contains information identifying DB2 to the vendor device.

Table 14. Fields in the DB2-INFO Structure. All fields are NULL-terminated strings.

Field Name Data Type Description

DB2_id char An identifier for the DB2 product. Maximum
length of the string it points to is 8 characters.

version char The current version of the DB2 product.
Maximum length of the string it points to is 8
characters.

release char The current release of the DB2 product. Set to
NULL if it is insignificant. Maximum length of
the string it points to is 8 characters.

level char The current level of the DB2 product. Set to
NULL if it is insignificant. Maximum length of
the string it points to is 8 characters.

action char Specifies the action to be taken. Maximum
length of the string it points to is 1 character.

filename char The file name used to identify the backup
image. If it is NULL, the server_id, db2instance,
dbname, and timestamp will uniquely identify
the backup image. Maximum length of the
string it points to is 255 characters.

server_id char A unique name identifying the server where
the database resides. Maximum length of the
string it points to is 8 characters.

db2instance char The db2instance ID. This is the user ID
invoking the command. Maximum length of
the string it points to is 8 characters.

sqluvdel - Delete Committed Session

Appendix H. Backup and Restore APIs for Vendor Products 347

Table 14. Fields in the DB2-INFO Structure (continued). All fields are
NULL-terminated strings.

Field Name Data Type Description

type char Specifies the type of backup being taken or
the type of restore being performed. The
following are possible values:

When action is SQLUV_WRITE:

0 - full database backup
3 - table space level backup

When action is SQLUV_READ:

0 - full restore
3 - online table space restore
4 - table space restore
5 - history file restore

dbname char The name of the database to be backed up or
restored. Maximum length of the string it
points to is 8 characters.

alias char The alias of the database to be backed up or
restored. Maximum length of the string it
points to is 8 characters.

timestamp char The time stamp used to identify the backup
image. Maximum length of the string it points
to is 26 characters.

sequence char Specifies the file extension for the backup
image. For write operations, the value for the
first session is 1 and each time another session
is initiated with an sqluvint call, the value is
incremented by 1. For read operations, the
value is always zero. Maximum length of the
string it points to is 3 characters.

obj_list struct sqlu_gen_list Reseverd for future use.

max_bytes_per_txn sqlint32 Specifies to the vendor in bytes, the transfer
buffer size specified by the user.

image_filename char Reserved for future use.

reserve void Reserved for future use.

nodename char Name of the node at which the backup was
generated.

password char Password for the node at which the backup
was generated.

owner char ID of the backup originator.

mcNameP char Management class.

nodeNum SQL_PDB_NODE_TYPE Node number. Numbers greater than 255 are
supported by the vendor interface.

DB2-INFO

348 Data Recovery and High Availability Guide and Reference

The filename, or server_id, db2instance, type, dbname and timestamp uniquely
identifies the backup image. The sequence number, specified by sequence,
identifies the file extension. When a backup image is to be restored, the same
values must be specified to retrieve the backup image. Depending on the
vendor product, if filename is used, the other parameters may be set to NULL,
and vice versa.

DB2-INFO

Appendix H. Backup and Restore APIs for Vendor Products 349

Language syntax:

C Structure

VENDOR-INFO

This structure contains information identifying the vendor and version of the
device.

Table 15. Fields in the VENDOR-INFO Structure. All fields are NULL-terminated
strings.

Field Name Data Type Description

vendor_id char An identifier for the vendor. Maximum length
of the string it points to is 64 characters.

version char The current version of the vendor product.
Maximum length of the string it points to is 8
characters.

release char The current release of the vendor product. Set
to NULL if it is insignificant. Maximum length
of the string it points to is 8 characters.

/* File: sqluvend.h */
/* ... */
typedef struct DB2_info
{

char *DB2_id;
char *version;
char *release;
char *level;
char *action;
char *filename;
char *server_id;
char *db2instance;
char *type;
char *dbname;
char *alias;
char *timestamp;
char *sequence;
struct sqlu_gen_list *obj_list;
long max_bytes_per_txn;
char *image_filename;
void *reserve;
char *nodename;
char *password;
char *owner;
char *mcNameP;
SQL_PDB_NODE_TYPE nodeNum;

} DB2_info;
/* ... */

DB2-INFO

350 Data Recovery and High Availability Guide and Reference

Table 15. Fields in the VENDOR-INFO Structure (continued). All fields are
NULL-terminated strings.

Field Name Data Type Description

level char The current level of the vendor product. Set to
NULL if it is insignificant. Maximum length of
the string it points to is 8 characters.

server_id char A unique name identifying the server where
the database resides. Maximum length of the
string it points to is 8 characters.

max_bytes_per_txn sqlint32 The maximum supported transfer buffer size.
Specified by the vendor, in bytes. This is used
only if the return code from the vendor
initialize function is SQLUV_BUFF_SIZE,
indicating that an invalid buffer size was
specified.

num_objects_in_backup sqlint32 The number of sessions that were used to
make a complete backup. This is used to
determine when all backup images have been
processed during a restore operation.

reserve void Reserved for future use.

Language syntax:

C Structure

INIT-INPUT

This structure contains information provided by DB2 to set up and to
establish a logical link with the vendor device.

Table 16. Fields in the INIT-INPUT Structure. All fields are NULL-terminated strings.

Field Name Data Type Description

DB2_session struct DB2_info A description of the session from the
perspective of DB2.

typedef struct Vendor_info
{

char *vendor_id;
char *version;
char *release;
char *level;
char *server_id;
sqlint32 max_bytes_per_txn;
sqlint32 num_objects_in_backup;
void *reserve;

} Vendor_info;

VENDOR-INFO

Appendix H. Backup and Restore APIs for Vendor Products 351

Table 16. Fields in the INIT-INPUT Structure (continued). All fields are
NULL-terminated strings.

Field Name Data Type Description

size_options unsigned short The length of the options field. When using
the DB2 backup or restore function, the data
in this field is passed directly from the
VendorOptionsSize parameter.

size_HI_order sqluint32 High order 32 bits of DB size estimate in
bytes; total size is 64 bits.

size_LOW_order sqluint32 Low order 32 bits of DB size estimate in bytes;
total size is 64 bits.

options void This information is passed from the
application when the backup or the restore
function is invoked. This data structure must
be flat; in other words, no level of indirection
is supported. Byte-reversal is not done, and
the code page for this data is not checked.
When using the DB2 backup or restore
function, the data in this field is passed
directly from the pVendorOptions parameter.

reserve void Reserved for future use.

prompt_lvl char Prompting level requested by the user when a
backup or a restore operation was invoked.
Maximum length of the string it points to is 1
character.

num_sessions unsigned short Number of sessions requested by the user
when a backup or a restore operation was
invoked.

INIT-INPUT

352 Data Recovery and High Availability Guide and Reference

Language syntax:

C Structure
typedef struct Init_input
{

struct DB2_info *DB2_session;
unsigned short size_options;
sqluint32 size_HI_order;
sqluint32 size_LOW_order;
void *options;
void *reserve;
char *prompt_lvl;
unsigned short num_sessions;

} Init_input;

INIT-OUTPUT

This structure contains the output returned by the vendor device.

Table 17. Fields in the INIT-OUTPUT Structure

Field Name Data Type Description

vendor_session struct Vendor_info Contains information to identify the vendor to
DB2.

pVendorCB void Vendor control block.

reserve void Reserved for future use.

Language syntax:

C Structure

DATA

This structure contains data transferred between DB2 and the vendor device.

Table 18. Fields in the DATA Structure

Field Name Data Type Description

obj_num sqlint32 The sequence number assigned by DB2 during
a backup operation.

buff_size sqlint32 The size of the buffer.

typedef struct Init_output
{

struct Vendor_info *vendor_session;
void *pVendorCB;
void *reserve;

} Init_output;

INIT-INPUT

Appendix H. Backup and Restore APIs for Vendor Products 353

Table 18. Fields in the DATA Structure (continued)

Field Name Data Type Description

actual_buf_size sqlint32 The actual number of bytes sent or received.
This must not exceed buff_size.

dataptr void Pointer to the data buffer. DB2 allocates space
for the buffer.

reserve void Reserved for future use.

Language syntax:

C Structure

RETURN-CODE

This structure contains the return code and a short explanation of the error
being returned to DB2.

Table 19. Fields in the RETURN-CODE Structure

Field Name Data Type Description

return_codea sqlint32 Return code from the vendor function.

description char A short description of the return code.

reserve void Reserved for future use.
a This is a vendor-specific return code that is not the same as the value returned by various DB2
APIs. See the individual API descriptions for the return codes that are accepted from vendor
products.

Language syntax:

C Structure

typedef struct Data
{

sqlint32 obj_num;
sqlint32 buff_size;
sqlint32 actual_buff_size;
void *dataptr;
void *reserve;

} Data;

typedef struct Return_code
{

sqlint32 return_code,
char description[30],
void *reserve,

} Return_code;

DATA

354 Data Recovery and High Availability Guide and Reference

RETURN-CODE

Appendix H. Backup and Restore APIs for Vendor Products 355

RETURN-CODE

356 Data Recovery and High Availability Guide and Reference

Appendix I. DB2 Universal Database technical information

Overview of DB2 Universal Database technical information

DB2 Universal Database technical information can be obtained in the
following formats:
v Books (PDF and hard-copy formats)
v A topic tree (HTML format)
v Help for DB2 tools (HTML format)
v Sample programs (HTML format)
v Command line help
v Tutorials

This section is an overview of the technical information that is provided and
how you can access it.

Categories of DB2 technical information
The DB2 technical information is categorized by the following headings:
v Core DB2 information
v Administration information
v Application development information
v Business intelligence information
v DB2 Connect information
v Getting started information
v Tutorial information
v Optional component information
v Release notes

The following tables describe, for each book in the DB2 library, the
information needed to order the hard copy, print or view the PDF, or locate
the HTML directory for that book. A full description of each of the books in
the DB2 library is available from the IBM Publications Center at
www.ibm.com/shop/publications/order

The installation directory for the HTML documentation CD differs for each
category of information:
htmlcdpath/doc/htmlcd/%L/category

where:

© Copyright IBM Corp. 2001, 2002 357

http://www.ibm.com/shop/publications/order

v htmlcdpath is the directory where the HTML CD is installed.
v %L is the language identifier. For example, en_US.
v category is the category identifier. For example, core for the core DB2

information.

In the PDF file name column in the following tables, the character in the sixth
position of the file name indicates the language version of a book. For
example, the file name db2d1e80 identifies the English version of the
Administration Guide: Planning and the file name db2d1g80 identifies the
German version of the same book. The following letters are used in the sixth
position of the file name to indicate the language version:

Language Identifier
Arabic w
Brazilian Portuguese b
Bulgarian u
Croatian 9
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Romanian 8
Russian r
Simp. Chinese c
Slovakian 7
Slovenian l
Spanish z
Swedish s
Trad. Chinese t
Turkish m

No form number indicates that the book is only available online and does not
have a printed version.

358 Data Recovery and High Availability Guide and Reference

Core DB2 information
The information in this category cover DB2 topics that are fundamental to all
DB2 users. You will find the information in this category useful whether you
are a programmer, a database administrator, or you work with DB2 Connect,
DB2 Warehouse Manager, or other DB2 products.

The installation directory for this category is doc/htmlcd/%L/core.

Table 20. Core DB2 information

Name Form Number PDF File Name

IBM DB2 Universal Database
Command Reference

SC09-4828 db2n0x80

IBM DB2 Universal Database
Glossary

No form number db2t0x80

IBM DB2 Universal Database
Master Index

SC09-4839 db2w0x80

IBM DB2 Universal Database
Message Reference, Volume 1

GC09-4840 db2m1x80

IBM DB2 Universal Database
Message Reference, Volume 2

GC09-4841 db2m2x80

IBM DB2 Universal Database
What’s New

SC09-4848 db2q0x80

Administration information
The information in this category covers those topics required to effectively
design, implement, and maintain DB2 databases, data warehouses, and
federated systems.

The installation directory for this category is doc/htmlcd/%L/admin.

Table 21. Administration information

Name Form number PDF file name

IBM DB2 Universal Database
Administration Guide:
Planning

SC09-4822 db2d1x80

IBM DB2 Universal Database
Administration Guide:
Implementation

SC09-4820 db2d2x80

IBM DB2 Universal Database
Administration Guide:
Performance

SC09-4821 db2d3x80

IBM DB2 Universal Database
Administrative API Reference

SC09-4824 db2b0x80

Appendix I. DB2 Universal Database technical information 359

Table 21. Administration information (continued)

Name Form number PDF file name

IBM DB2 Universal Database
Data Movement Utilities Guide
and Reference

SC09-4830 db2dmx80

IBM DB2 Universal Database
Data Recovery and High
Availability Guide and
Reference

SC09-4831 db2hax80

IBM DB2 Universal Database
Data Warehouse Center
Administration Guide

SC27-1123 db2ddx80

IBM DB2 Universal Database
Federated Systems Guide

GC27-1224 db2fpx80

IBM DB2 Universal Database
Guide to GUI Tools for
Administration and
Development

SC09-4851 db2atx80

IBM DB2 Universal Database
Replication Guide and Reference

SC27-1121 db2e0x80

IBM DB2 Installing and
Administering a Satellite
Environment

GC09-4823 db2dsx80

IBM DB2 Universal Database
SQL Reference, Volume 1

SC09-4844 db2s1x80

IBM DB2 Universal Database
SQL Reference, Volume 2

SC09-4845 db2s2x80

IBM DB2 Universal Database
System Monitor Guide and
Reference

SC09-4847 db2f0x80

Application development information
The information in this category is of special interest to application developers
or programmers working with DB2. You will find information about
supported languages and compilers, as well as the documentation required to
access DB2 using the various supported programming interfaces, such as
embedded SQL, ODBC, JDBC, SQLj, and CLI. If you view this information
online in HTML you can also access a set of DB2 sample programs in HTML.

360 Data Recovery and High Availability Guide and Reference

The installation directory for this category is doc/htmlcd/%L/ad.

Table 22. Application development information

Name Form number PDF file name

IBM DB2 Universal Database
Application Development
Guide: Building and Running
Applications

SC09-4825 db2axx80

IBM DB2 Universal Database
Application Development
Guide: Programming Client
Applications

SC09-4826 db2a1x80

IBM DB2 Universal Database
Application Development
Guide: Programming Server
Applications

SC09-4827 db2a2x80

IBM DB2 Universal Database
Call Level Interface Guide and
Reference, Volume 1

SC09-4849 db2l1x80

IBM DB2 Universal Database
Call Level Interface Guide and
Reference, Volume 2

SC09-4850 db2l2x80

IBM DB2 Universal Database
Data Warehouse Center
Application Integration Guide

SC27-1124 db2adx80

IBM DB2 XML Extender
Administration and
Programming

SC27-1234 db2sxx80

Business intelligence information
The information in this category describes how to use components that
enhance the data warehousing and analytical capabilities of DB2 Universal
Database.

The installation directory for this category is doc/htmlcd/%L/wareh.

Table 23. Business intelligence information

Name Form number PDF file name

IBM DB2 Warehouse Manager
Information Catalog Center
Administration Guide

SC27-1125 db2dix80

IBM DB2 Warehouse Manager
Installation Guide

GC27-1122 db2idx80

Appendix I. DB2 Universal Database technical information 361

DB2 Connect information
The information in this category describes how to access host or iSeries data
using DB2 Connect Enterprise Edition or DB2 Connect Personal Edition.

The installation directory for this category is doc/htmlcd/%L/conn.

Table 24. DB2 Connect information

Name Form number PDF file name

APPC, CPI-C, and SNA Sense
Codes

No form number db2apx80

IBM Connectivity Supplement No form number db2h1x80

IBM DB2 Connect Quick
Beginnings for DB2 Connect
Enterprise Edition

GC09-4833 db2c6x80

IBM DB2 Connect Quick
Beginnings for DB2 Connect
Personal Edition

GC09-4834 db2c1x80

IBM DB2 Connect User’s
Guide

SC09-4835 db2c0x80

Getting started information
The information in this category is useful when you are installing and
configuring servers, clients, and other DB2 products.

The installation directory for this category is doc/htmlcd/%L/start.

Table 25. Getting started information

Name Form number PDF file name

IBM DB2 Universal Database
Quick Beginnings for DB2
Clients

GC09-4832 db2itx80

IBM DB2 Universal Database
Quick Beginnings for DB2
Servers

GC09-4836 db2isx80

IBM DB2 Universal Database
Quick Beginnings for DB2
Personal Edition

GC09-4838 db2i1x80

IBM DB2 Universal Database
Installation and Configuration
Supplement

GC09-4837 db2iyx80

IBM DB2 Universal Database
Quick Beginnings for DB2
Data Links Manager

GC09-4829 db2z6x80

362 Data Recovery and High Availability Guide and Reference

Tutorial information
Tutorial information introduces DB2 features and teaches how to perform
various tasks.

The installation directory for this category is doc/htmlcd/%L/tutr.

Table 26. Tutorial information

Name Form number PDF file name

Business Intelligence Tutorial:
Introduction to the Data
Warehouse

No form number db2tux80

Business Intelligence Tutorial:
Extended Lessons in Data
Warehousing

No form number db2tax80

Development Center Tutorial
for Video Online using
Microsoft Visual Basic

No form number db2tdx80

Information Catalog Center
Tutorial

No form number db2aix80

Video Central for e-business
Tutorial

No form number db2twx80

Visual Explain Tutorial No form number db2tvx80

Optional component information
The information in this category describes how to work with optional DB2
components.

The installation directory for this category is doc/htmlcd/%L/opt.

Table 27. Optional component information

Name Form number PDF file name

IBM DB2 Life Sciences Data
Connect Planning, Installation,
and Configuration Guide

GC27-1235 db2lsx80

IBM DB2 Spatial Extender
User’s Guide and Reference

SC27-1226 db2sbx80

IBM DB2 Universal Database
Data Links Manager
Administration Guide and
Reference

SC27-1221 db2z0x80

Appendix I. DB2 Universal Database technical information 363

Table 27. Optional component information (continued)

Name Form number PDF file name

IBM DB2 Universal Database
Net Search Extender
Administration and
Programming Guide
Note: HTML for this
document is not installed
from the HTML
documentation CD.

SH12-6740 N/A

Release notes
The release notes provide additional information specific to your product’s
release and FixPak level. They also provides summaries of the documentation
updates incorporated in each release and FixPak.

Table 28. Release notes

Name Form number PDF file name HTML directory

DB2 Release Notes See note. See note. doc/prodcd/%L/db2ir

where %L is the
language identifier.

DB2 Connect Release
Notes

See note. See note. doc/prodcd/%L/db2cr

where %L is the
language identifier.

DB2 Installation Notes Available on
product CD-ROM
only.

Available on
product CD-ROM
only.

Note: The HTML version of the release notes is available from the
Information Center and on the product CD-ROMs. To view the ASCII
file:
v On UNIX-based platforms, see the Release.Notes file. This file is

located in the DB2DIR/Readme/%L directory, where %L represents the
locale name and DB2DIR represents:
– /usr/opt/db2_08_01 on AIX
– /opt/IBM/db2/V8.1 on all other UNIX operating systems

v On other platforms, see the RELEASE.TXT file. This file is located in
the directory where the product is installed.

Related tasks:

v “Printing DB2 books from PDF files” on page 365

364 Data Recovery and High Availability Guide and Reference

v “Ordering printed DB2 books” on page 366
v “Accessing online help” on page 366
v “Finding product information by accessing the DB2 Information Center

from the administration tools” on page 370
v “Viewing technical documentation online directly from the DB2 HTML

Documentation CD” on page 371

Printing DB2 books from PDF files

You can print DB2 books from the PDF files on the DB2 PDF Documentation
CD. Using Adobe Acrobat Reader, you can print either the entire book or a
specific range of pages.

Prerequisites:

Ensure that you have Adobe Acrobat Reader. It is available from the Adobe
Web site at www.adobe.com

Procedure:

To print a DB2 book from a PDF file:
1. Insert the DB2 PDF Documentation CD. On UNIX operating systems,

mount the DB2 PDF Documentation CD. Refer to your Quick Beginnings
book for details on how to mount a CD on UNIX operating systems.

2. Start Adobe Acrobat Reader.
3. Open the PDF file from one of the following locations:

v On Windows operating systems:
x:\doc\language directory, where x represents the CD-ROM drive letter
and language represents the two-character territory code that represents
your language (for example, EN for English).

v On UNIX operating systems:
/cdrom/doc/%L directory on the CD-ROM, where /cdrom represents the
mount point of the CD-ROM and %L represents the name of the desired
locale.

Related tasks:

v “Ordering printed DB2 books” on page 366
v “Finding product information by accessing the DB2 Information Center

from the administration tools” on page 370
v “Viewing technical documentation online directly from the DB2 HTML

Documentation CD” on page 371

Related reference:

Appendix I. DB2 Universal Database technical information 365

http://www.adobe.com/

v “Overview of DB2 Universal Database technical information” on page 357

Ordering printed DB2 books

Procedure:

To order printed books:
v Contact your IBM authorized dealer or marketing representative. To find a

local IBM representative, check the IBM Worldwide Directory of Contacts at
www.ibm.com/shop/planetwide

v Phone 1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.
v Visit the IBM Publications Center at

www.ibm.com/shop/publications/order

Related tasks:

v “Printing DB2 books from PDF files” on page 365
v “Finding topics by accessing the DB2 Information Center from a browser”

on page 368
v “Viewing technical documentation online directly from the DB2 HTML

Documentation CD” on page 371

Related reference:

v “Overview of DB2 Universal Database technical information” on page 357

Accessing online help

The online help that comes with all DB2 components is available in three
types:
v Window and notebook help
v Command line help
v SQL statement help

Window and notebook help explain the tasks that you can perform in a
window or notebook and describe the controls. This help has two types:
v Help accessible from the Help button
v Infopops

The Help button gives you access to overview and prerequisite information.
The infopops describe the controls in the window or notebook. Window and
notebook help are available from DB2 centers and components that have user
interfaces.

366 Data Recovery and High Availability Guide and Reference

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order

Command line help includes Command help and Message help. Command
help explains the syntax of commands in the command line processor.
Message help describes the cause of an error message and describes any
action you should take in response to the error.

SQL statement help includes SQL help and SQLSTATE help. DB2 returns an
SQLSTATE value for conditions that could be the result of an SQL statement.
SQLSTATE help explains the syntax of SQL statements (SQL states and class
codes).

Note: SQL help is not available for UNIX operating systems.

Procedure:

To access online help:
v For window and notebook help, click Help or click that control, then click

F1. If the Automatically display infopops check box on the General page
of the Tool Settings notebook is selected, you can also see the infopop for a
particular control by holding the mouse cursor over the control.

v For command line help, open the command line processor and enter:
– For Command help:

? command

where command represents a keyword or the entire command.

For example, ? catalog displays help for all the CATALOG commands,
while ? catalog database displays help for the CATALOG DATABASE
command.

v For Message help:
? XXXnnnnn

where XXXnnnnn represents a valid message identifier.

For example, ? SQL30081 displays help about the SQL30081 message.
v For SQL statement help, open the command line processor and enter:

– For SQL help:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code
represents the first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, while ? 08
displays help for the 08 class code.

– For SQLSTATE help:

Appendix I. DB2 Universal Database technical information 367

help statement

where statement represents an SQL statement.

For example, help SELECT displays help about the SELECT statement.

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 368

v “Viewing technical documentation online directly from the DB2 HTML
Documentation CD” on page 371

Finding topics by accessing the DB2 Information Center from a browser

The DB2 Information Center accessed from a browser enables you to access
the information you need to take full advantage of DB2 Universal Database
and DB2 Connect. The DB2 Information Center also documents major DB2
features and components including replication, data warehousing, metadata,
Life Sciences Data Connect, and DB2 extenders.

The DB2 Information Center accessed from a browser is composed of the
following major elements:

Navigation tree
The navigation tree is located in the left frame of the browser window.
The tree expands and collapses to show and hide topics, the glossary,
and the master index in the DB2 Information Center.

Navigation toolbar
The navigation toolbar is located in the top right frame of the browser
window. The navigation toolbar contains buttons that enable you to
search the DB2 Information Center, hide the navigation tree, and find
the currently displayed topic in the navigation tree.

Content frame
The content frame is located in the bottom right frame of the browser
window. The content frame displays topics from the DB2 Information
Center when you click on a link in the navigation tree, click on a
search result, or follow a link from another topic or from the master
index.

Prerequisites:

To access the DB2 Information Center from a browser, you must use one of
the following browsers:
v Microsoft Explorer, version 5 or later
v Netscape Navigator, version 6.1 or later

368 Data Recovery and High Availability Guide and Reference

Restrictions:

The DB2 Information Center contains only those sets of topics that you chose
to install from the DB2 HTML Documentation CD. If your Web browser returns
a File not found error when you try to follow a link to a topic, you must
install one or more additional sets of topics DB2 HTML Documentation CD.

Procedure:

To find a topic by searching with keywords:
1. In the navigation toolbar, click Search.
2. In the top text entry field of the Search window, enter two or more terms

related to your area of interest and click Search. A list of topics ranked by
accuracy displays in the Results field.
Entering more terms increases the precision of your query while reducing
the number of topics returned from your query.

3. In the Results field, click the title of the topic you want to read. The topic
displays in the content frame.

To find a topic in the navigation tree:
1. In the navigation tree, click the book icon of the category of topics related

to your area of interest. A list of subcategories displays underneath the
icon.

2. Continue to click the book icons until you find the category containing
the topics in which you are interested. Categories that link to topics
display the category title as an underscored link when you move the
cursor over the category title. The navigation tree identifies topics with a
page icon.

3. Click the topic link. The topic displays in the content frame.

To find a topic or term in the master index:
1. In the navigation tree, click the “Index” category. The category expands to

display a list of links arranged in alphabetical order in the navigation tree.
2. In the navigation tree, click the link corresponding to the first character of

the term relating to the topic in which you are interested. A list of terms
with that initial character displays in the content frame. Terms that have
multiple index entries are identified by a book icon.

3. Click the book icon corresponding to the term in which you are
interested. A list of subterms and topics displays below the term you
clicked. Topics are identified by page icons with an underscored title.

4. Click on the title of the topic that meets your needs. The topic displays in
the content frame.

Appendix I. DB2 Universal Database technical information 369

Related concepts:

v “Accessibility” on page 377
v “DB2 Information Center for topics” on page 379

Related tasks:

v “Finding product information by accessing the DB2 Information Center
from the administration tools” on page 370

v “Updating the HTML documentation installed on your machine” on page
372

v “Troubleshooting DB2 documentation search with Netscape 4.x” on page
374

v “Searching the DB2 documentation” on page 375

Related reference:

v “Overview of DB2 Universal Database technical information” on page 357

Finding product information by accessing the DB2 Information Center from the
administration tools

The DB2 Information Center provides quick access to DB2 product
information and is available on all operating systems for which the DB2
administration tools are available.

The DB2 Information Center accessed from the tools provides six types of
information.

Tasks Key tasks you can perform using DB2.

Concepts
Key concepts for DB2.

Reference
DB2 reference information, such as keywords, commands, and APIs.

Troubleshooting
Error messages and information to help you with common DB2
problems.

Samples
Links to HTML listings of the sample programs provided with DB2.

Tutorials
Instructional aid designed to help you learn a DB2 feature.

Prerequisites:

370 Data Recovery and High Availability Guide and Reference

Some links in the DB2 Information Center point to Web sites on the Internet.
To display the content for these links, you will first have to connect to the
Internet.

Procedure:

To find product information by accessing the DB2 Information Center from
the tools:
1. Start the DB2 Information Center in one of the following ways:

v From the graphical administration tools, click on the Information
Center icon in the toolbar. You can also select it from the Help menu.

v At the command line, enter db2ic.
2. Click the tab of the information type related to the information you are

attempting to find.
3. Navigate through the tree and click on the topic in which you are

interested. The Information Center will then launch a Web browser to
display the information.

4. To find information without browsing the lists, click the Search icon to the
right of the list.
Once the Information Center has launched a browser to display the
information, you can perform a full-text search by clicking the Search icon
in the navigation toolbar.

Related concepts:

v “Accessibility” on page 377
v “DB2 Information Center for topics” on page 379

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 368

v “Searching the DB2 documentation” on page 375

Viewing technical documentation online directly from the DB2 HTML
Documentation CD

All of the HTML topics that you can install from the DB2 HTML
Documentation CD can also be read directly from the CD. Therefore, you can
view the documentation without having to install it.

Restrictions:

Appendix I. DB2 Universal Database technical information 371

Because the following items are installed from the DB2 product CD and not
the DB2 HTML Documentation CD, you must install the DB2 product to view
these items:
v Tools help
v DB2 Quick Tour
v Release notes

Procedure:

1. Insert the DB2 HTML Documentation CD. On UNIX operating systems,
mount the DB2 HTML Documentation CD. Refer to your Quick Beginnings
book for details on how to mount a CD on UNIX operating systems.

2. Start your HTML browser and open the appropriate file:
v For Windows operating systems:

e:\Program Files\sqllib\doc\htmlcd\%L\index.htm

where e represents the CD-ROM drive, and %L is the locale of the
documentation that you wish to use, for example, en_US for English.

v For UNIX operating systems:
/cdrom/Program Files/sqllib/doc/htmlcd/%L/index.htm

where /cdrom/ represents where the CD is mounted, and %L is the locale
of the documentation that you wish to use, for example, en_US for
English.

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 368

v “Copying files from the DB2 HTML Documentation CD to a Web Server”
on page 374

Related reference:

v “Overview of DB2 Universal Database technical information” on page 357

Updating the HTML documentation installed on your machine

It is now possible to update the HTML installed from the DB2 HTML
Documentation CD when updates are made available from IBM. This can be
done in one of two ways:
v Using the Information Center (if you have the DB2 administration GUI

tools installed).
v By downloading and applying a DB2 HTML documentation FixPak .

372 Data Recovery and High Availability Guide and Reference

Note: This will NOT update the DB2 code; it will only update the HTML
documentation installed from the DB2 HTML Documentation CD.

Procedure:

To use the Information Center to update your local documentation:
1. Start the DB2 Information Center in one of the following ways:

v From the graphical administration tools, click on the Information
Center icon in the toolbar. You can also select it from the Help menu.

v At the command line, enter db2ic.
2. Ensure your machine has access to the external Internet; the updater will

download the latest documentation FixPak from the IBM server if
required.

3. Select Information Center —> Update Local Documentation from the
menu to start the update.

4. Supply your proxy information (if required) to connect to the external
Internet.

The Information Center will download and apply the latest documentation
FixPak, if one is available.

To manually download and apply the documentation FixPak :
1. Ensure your machine is connected to the Internet.
2. Open the DB2 support page in your Web browser at:

www.ibm.com/software/data/db2/udb/winos2unix/support
3. Follow the link for version 8 and look for the ″Documentation FixPaks″

link.
4. Determine if the version of your local documentation is out of date by

comparing the documentation FixPak level to the documentation level you
have installed. This current documentation on your machine is at the
following level: DB2 v8.1 GA.

5. If there is a more recent version of the documentation available then
download the FixPak applicable to your operating system. There is one
FixPak for all Windows platforms, and one FixPak for all UNIX platforms.

6. Apply the FixPak:
v For Windows operating systems: The documentation FixPak is a self

extracting zip file. Place the downloaded documentation FixPak in an
empty directory, and run it. It will create a setup command which you
can run to install the documentation FixPak.

v For UNIX operating systems: The documentation FixPak is a
compressed tar.Z file. Uncompress and untar the file. It will create a
directory named delta_install with a script called installdocfix. Run
this script to install the documentation FixPak.

Appendix I. DB2 Universal Database technical information 373

Related tasks:

v “Copying files from the DB2 HTML Documentation CD to a Web Server”
on page 374

Related reference:

v “Overview of DB2 Universal Database technical information” on page 357

Copying files from the DB2 HTML Documentation CD to a Web Server

The entire DB2 information library is delivered to you on the DB2 HTML
Documentation CD, so you can install the library on a Web server for easier
access. Simply copy to your Web server the documentation for the languages
that you want.

Procedure:

To copy files from the DB2 HTML Documentation CD to a Web server, use the
appropriate path:
v For Windows operating systems:

E:\Program Files\sqllib\doc\htmlcd\%L*.*

where E represents the CD-ROM drive and %L represents the language
identifier.

v For UNIX operating systems:
/cdrom:Program Files/sqllib/doc/htmlcd/%L/*.*

where cdrom represents the CD-ROM drive and %L represents the language
identifier.

Related tasks:

v “Searching the DB2 documentation” on page 375

Related reference:

v “Supported DB2 interface languages, locales, and code pages” in the Quick
Beginnings for DB2 Servers

v “Overview of DB2 Universal Database technical information” on page 357

Troubleshooting DB2 documentation search with Netscape 4.x

Most search problems are related to the Java support provided by web
browsers. This task describes possible workarounds.

Procedure:

374 Data Recovery and High Availability Guide and Reference

A common problem with Netscape 4.x involves a missing or misplaced
security class. Try the following workaround, especially if you see the
following line in the browser Java console:
Cannot find class java/security/InvalidParameterException

v On Windows operating systems:
From the DB2 HTML Documentation CD, copy the supplied x:Program
Files\sqllib\doc\htmlcd\locale\InvalidParameterException.class file to
the java\classes\java\security\ directory relative to your Netscape
browser installation, where x represents the CD-ROM drive letter and locale
represents the name of the desired locale.

Note: You may have to create the java\security\ subdirectory structure.
v On UNIX operating systems:

From the DB2 HTML Documentation CD, copy the supplied /cdrom/Program
Files/sqllib/doc/htmlcd/locale/InvalidParameterException.class file to
the java/classes/java/security/ directory relative to your Netscape
browser installation, where cdrom represents the mount point of the
CD-ROM and locale represents the name of the desired locale.

Note: You may have to create the java/security/ subdirectory structure.

If your Netscape browser still fails to display the search input window, try the
following:
v Stop all instances of Netscape browsers to ensure that there is no Netscape

code running on the machine. Then open a new instance of the Netscape
browser and try to start the search again.

v Purge the browser’s cache.
v Try a different version of Netscape, or a different browser.

Related tasks:

v “Searching the DB2 documentation” on page 375

Searching the DB2 documentation

To search DB2’s documentation, you need Netscape 6.1 or higher, or
Microsoft’s Internet Explorer 5 or higher. Ensure that your browser’s Java
support is enabled.

A pop-up search window opens when you click the search icon in the
navigation toolbar of the Information Center accessed from a browser. If you
are using the search for the first time it may take a minute or so to load into
the search window.

Restrictions:

Appendix I. DB2 Universal Database technical information 375

The following restrictions apply when you use the documentation search:
v Boolean searches are not supported. The boolean search qualifiers and and

or will be ignored in a search. For example, the following searches would
produce the same results:
– servlets and beans
– servlets or beans

v Wildcard searches are not supported. A search on java* will only look for
the literal string java* and would not, for example, find javadoc.

In general, you will get better search results if you search for phrases instead
of single words.

Procedure:

To search the DB2 documentation:
1. In the navigation toolbar, click Search.
2. In the top text entry field of the Search window, enter two or more terms

related to your area of interest and click Search. A list of topics ranked by
accuracy displays in the Results field.
Entering more terms increases the precision of your query while reducing
the number of topics returned from your query.

3. In the Results field, click the title of the topic you want to read. The topic
displays in the content frame.

Note: When you perform a search, the first result is automatically loaded into
your browser frame. To view the contents of other search results, click
on the result in results lists.

Related tasks:

v “Troubleshooting DB2 documentation search with Netscape 4.x” on page
374

Online DB2 troubleshooting information

With the release of DB2® UDB Version 8, there will no longer be a
Troubleshooting Guide. The troubleshooting information once contained in this
guide has been integrated into the DB2 publications. By doing this, we are
able to deliver the most up-to-date information possible. To find information
on the troubleshooting utilities and functions of DB2, access the DB2
Information Center from any of the tools.

Refer to the DB2 Online Support site if you are experiencing problems and
want help finding possible causes and solutions. The support site contains a

376 Data Recovery and High Availability Guide and Reference

large, constantly updated database of DB2 publications, TechNotes, APAR
(product problem) records, FixPaks, and other resources. You can use the
support site to search through this knowledge base and find possible solutions
to your problems.

Access the Online Support site at
www.ibm.com/software/data/db2/udb/winos2unix/support, or by clicking
the Online Support button in the DB2 Information Center. Frequently
changing information, such as the listing of internal DB2 error codes, is now
also available from this site.

Related concepts:

v “DB2 Information Center for topics” on page 379

Related tasks:

v “Finding product information by accessing the DB2 Information Center
from the administration tools” on page 370

Accessibility

Accessibility features help users with physical disabilities, such as restricted
mobility or limited vision, to use software products successfully. These are the
major accessibility features in DB2® Universal Database Version 8:
v DB2 allows you to operate all features using the keyboard instead of the

mouse. See “Keyboard Input and Navigation”.
v DB2 enables you customize the size and color of your fonts. See “Accessible

Display” on page 378.
v DB2 allows you to receive either visual or audio alert cues. See “Alternative

Alert Cues” on page 378.
v DB2 supports accessibility applications that use the Java™ Accessibility API.

See “Compatibility with Assistive Technologies” on page 378.
v DB2 comes with documentation that is provided in an accessible format.

See “Accessible Documentation” on page 378.

Keyboard Input and Navigation

Keyboard Input
You can operate the DB2 Tools using only the keyboard. You can use keys or
key combinations to perform most operations that can also be done using a
mouse.

Appendix I. DB2 Universal Database technical information 377

http://www.ibm.com/software/data/db2/udb/winos2unix/support

Keyboard Focus
In UNIX-based systems, the position of the keyboard focus is highlighted,
indicating which area of the window is active and where your keystrokes will
have an effect.

Accessible Display
The DB2 Tools have features that enhance the user interface and improve
accessibility for users with low vision. These accessibility enhancements
include support for customizable font properties.

Font Settings
The DB2 Tools allow you to select the color, size, and font for the text in
menus and dialog windows, using the Tools Settings notebook.

Non-dependence on Color
You do not need to distinguish between colors in order to use any of the
functions in this product.

Alternative Alert Cues
You can specify whether you want to receive alerts through audio or visual
cues, using the Tools Settings notebook.

Compatibility with Assistive Technologies
The DB2 Tools interface supports the Java Accessibility API enabling use by
screen readers and other assistive technologies used by people with
disabilities.

Accessible Documentation
Documentation for the DB2 family of products is available in HTML format.
This allows you to view documentation according to the display preferences
set in your browser. It also allows you to use screen readers and other
assistive technologies.

DB2 tutorials

The DB2® tutorials help you learn about various aspects of DB2 Universal
Database. The tutorials provide lessons with step-by-step instructions in the
areas of developing applications, tuning SQL query performance, working
with data warehouses, managing metadata, and developing Web services
using DB2.

Before you begin:

Before you can access these tutorials using the links below, you must install
the tutorials from the DB2 HTML Documentation CD-ROM.

378 Data Recovery and High Availability Guide and Reference

If you do not want to install the tutorials, you can view the HTML versions of
the tutorials directly from the DB2 HTML Documentation CD. PDF versions of
these tutorials are also available on the DB2 PDF Documentation CD.

Some tutorial lessons use sample data or code. See each individual tutorial for
a description of any prerequisites for its specific tasks.

DB2 Universal Database tutorials:

If you installed the tutorials from the DB2 HTML Documentation CD-ROM,
you can click on a tutorial title in the following list to view that tutorial.

Business Intelligence Tutorial: Introduction to the Data Warehouse Center
Perform introductory data warehousing tasks using the Data
Warehouse Center.

Business Intelligence Tutorial: Extended Lessons in Data Warehousing
Perform advanced data warehousing tasks using the Data Warehouse
Center.

Development Center Tutorial for Video Online using Microsoft® Visual Basic
Build various components of an application using the Development
Center Add-in for Microsoft Visual Basic.

Information Catalog Center Tutorial
Create and manage an information catalog to locate and use metadata
using the Information Catalog Center.

Video Central for e-business Tutorial
Develop and deploy an advanced DB2 Web Services application using
WebSphere® products.

Visual Explain Tutorial
Analyze, optimize, and tune SQL statements for better performance
using Visual Explain.

DB2 Information Center for topics

The DB2® Information Center gives you access to all of the information you
need to take full advantage of DB2 Universal Database™ and DB2 Connect™

in your business. The DB2 Information Center also documents major DB2
features and components including replication, data warehousing, the
Information Catalog Center, Life Sciences Data Connect, and DB2 extenders.

The DB2 Information Center accessed from a browser has the following
features:

Regularly updated documentation
Keep your topics up-to-date by downloading updated HTML.

Appendix I. DB2 Universal Database technical information 379

../tutr/db2tu/index.htm
../tutr/db2ta/index.htm
../tutr/db2td/index.htm
../tutr/db2ai/index.htm
../tutr/db2tw/index.htm
../tutr/db2tv/index.htm

Search
Search all of the topics installed on your workstation by clicking
Search in the navigation toolbar.

Integrated navigation tree
Locate any topic in the DB2 library from a single navigation tree. The
navigation tree is organized by information type as follows:
v Tasks provide step-by-step instructions on how to complete a goal.
v Concepts provide an overview of a subject.
v Reference topics provide detailed information about a subject,

including statement and command syntax, message help,
requirements.

Master index
Access the information in topics and tools help from one master
index. The index is organized in alphabetical order by index term.

Master glossary
The master glossary defines terms used in the DB2 Information
Center. The glossary is organized in alphabetical order by glossary
term.

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 368

v “Finding product information by accessing the DB2 Information Center
from the administration tools” on page 370

v “Updating the HTML documentation installed on your machine” on page
372

380 Data Recovery and High Availability Guide and Reference

Appendix J. Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country/region or send
inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions; therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 2001, 2002 381

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information that has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems, and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore,
some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility, or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

382 Data Recovery and High Availability Guide and Reference

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious, and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source
language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Appendix J. Notices 383

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both, and have been used
in at least one of the documents in the DB2 UDB documentation library.

ACF/VTAM
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
BookManager
C Set++
C/370
CICS
Database 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eServer
Extended Services
FFST
First Failure Support Technology
IBM
IMS
IMS/ESA
iSeries

LAN Distance
MVS
MVS/ESA
MVS/XA
Net.Data
NetView
OS/390
OS/400
PowerPC
pSeries
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/400
SQL/DS
System/370
System/390
SystemView
Tivoli
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WebSphere
WIN-OS/2
z/OS
zSeries

The following terms are trademarks or registered trademarks of other
companies and have been used in at least one of the documents in the DB2
UDB documentation library:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

384 Data Recovery and High Availability Guide and Reference

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, or service names may be trademarks or service
marks of others.

Appendix J. Notices 385

386 Data Recovery and High Availability Guide and Reference

Index

A
accessibility 377
active logs 34
administration notification log 11
APIs

db2Backup 77
db2HistoryCloseScan 241
db2HistoryGetEntry 242
db2HistoryOpenScan 245
db2HistoryUpdate 250
db2Prune 253
db2ReadLog 263
db2ReadLogNoConn 256
db2ReadLogNoConnInit 260
db2ReadLogNoConnTerm 262
db2Restore 104
db2Rollforward 145

ARCHIVE LOG
(db2ArchiveLog) 238

ARCHIVE LOG command 225
archive logging 34
archived logs

offline 34
online 34

archiving logs on demand 51
Asynchronous Read Log API 263
automatic restart 11

B
backup and restore

vendor products 327
Backup database API 77
BACKUP DATABASE command 72
Backup Services APIs (XBSA) 72
backup utility

authorities and privileges
required to use 66

displaying information 63
overview 63
performance 85
restrictions 67
troubleshooting 63

backups
active 56
container names 63
expired 56
frequency 7
images 63
inactive 56

backups (continued)
incremental 28
log chain 56
log sequence 56
offline 7
online 7
operating system restrictions 10
storage considerations 9
to named pipes 71
to tape 69
user exit program 9

blklogdskful database configuration
parameter 39

C
cascading assignment 177
Check Backup command 213
Check Incremental Restore Image

Sequence 216
circular logging 34

log file allocation 49
clone database, creating 168
Close History File Scan API 241
clusters 177
command syntax

interpreting 203
commands

db2ckbkp 213
UPDATE HISTORY FILE 234

completion messages 207
configuration parameters

database logging 39
containers

names 63
continuous availability 189
crash recovery 11

D
damaged table space 12
data and parity striping by sectors

(RAID level 5) 14
DATA structure 353
data structures

db2HistData 267
used by vendor APIs 327

database
restoring (rebuilding) 95

database configuration parameters
autorestart 11

database logs 34

database logs (continued)
configuration parameters 39

database objects
recovery history file 3
recovery log file 3
table space change history file 3

database partitions
synchronization 132

databases
backup history file 231
non-recoverable 3
recoverable 3
recovering 134
rollforward recovery 25
rollforward recovery of 134

DB2 books
ordering 366

DB2 Data Links Manager
garbage collection 56

DB2 documentation search
using Netscape 4.x 374

DB2 Information Center 379
DB2 sync point manager (SPM)

recovery of indoubt
transactions 21

DB2 tutorials 378
DB2-INFO structure 347
db2adutl 209
db2ArchiveLog - Archive Active

Log 238
db2Backup API 77
db2ckbkp command 213
db2ckrst 216
db2flsn 218
db2HistData structure 267
db2HistoryCloseScan API 241
db2HistoryGetEntry API 242
db2HistoryOpenScan API 245
db2HistoryUpdate API 250
db2inidb command 220
db2inidb tool 167
DB2LOADREC registry

variable 130
db2mscs utility 221
db2Prune API 253
db2ReadLog API 263
db2ReadLogNoConn API 256
db2ReadLogNoConnInit API 260
db2ReadLogNoConnTerm API 262

© Copyright IBM Corp. 2001, 2002 387

db2Restore API 104
db2Rollforward API 145
DELETE COMMITTED SESSION

(sqluvdel) 346
device, tape 72
disability 377
disaster recovery 23
disk arrays

hardware 14
reducing failure 14
software 14

disk failure protection 14
disk mirroring 14
disk mirroring or duplexing (RAID

level 1) 14
disks

RAID (redundant array of
independent disks) 14

striping 14
displaying information

backup utility 63
dropped table recovery 128
DSMICONFIG 319
DSMIDIR 319
DSMILOG 319
dual logging 37

E
enhanced scalability (ES) 177
error handling

log full 39
error messages

during rollforward 145
overview 207

ES (enhanced scalability) 177
event monitoring 177

F
failed database partition server

identifying 16
failover support 163

AIX 177
idle standby 163
mutual takeover 163
overview 189
Solaris Operating

Environment 189
Sun Cluster 3.0 192
Windows 183

failure
transaction 11

Fault Monitor Facility 171
fault tolerance 189
file systems

journaled 163

Find Log Sequence Number 218
flushing logs 34

G
garbage collection 56
Get Next History File Entry

API 242

H
HACMP (high availability cluster

multi-processing) 177
hardware disk arrays 14
heartbeat 177, 189
high availability 163, 183, 189
high availability cluster

multi-processing (HACMP) 177
hot standby configuration 177
HP-UX

backup and restore support 10

I
images

backup 63
incremental backup and

recovery 28
indoubt transactions

recovering
on the host 21

recovery
with DB2 Syncpoint

Manager 21
without DB2 Syncpoint

Manager 22
INIT-INPUT structure 351
INIT-OUTPUT structure 353
Initialize a Mirrored Database 220
INITIALIZE AND LINK TO DEVICE

(sqluvint) 336
Initialize Read Log Without a

Database Connection API 260
INITIALIZE TAPE 227

J
Journaled File System (JFS)

AIX considerations 163

K
keepalive packets 177
keywords

syntax 203

L
LIST HISTORY 228
load copy location file, using

rollforward 130
log chain 56

log file management
ACTIVATE DATABASE

command 45
log sequence 56
LOGBUFSZ configuration

parameter 39
LOGFILSIZ configuration

parameter 39
logging

archive 34
circular 34

LOGPRIMARY configuration
parameter 39

logretain configuration
parameter 39

logs
active 34
allocation 49
archiving on demand 51
circular logging 49
database 34
directory, full 50
flushing 34
listing during roll forward 134
managing 45
mirroring 37
offline archived 34
online archived 34
preventing loss 53
removal 49
storage required 9
user exit program 9

LOGSECOND configuration
parameter

description 39

M
media failure

catalog node considerations 14
logs 9
reducing the impact of 14

messages
overview 207

Microsoft Cluster Server
(MSCS) 183

mincommit database configuration
parameter 39

mirroring
logs 37

MIRRORLOGPATH configuration
parameter 37

mirrorlogpath database
configuration parameter 39

MSCS (Microsoft Cluster
Server) 183

388 Data Recovery and High Availability Guide and Reference

multiple instances
use with Tivoli Storage

Manager 319
mutual takeover configuration 177

N
named pipes, backing up to 71
newlogpath database configuration

parameter 39
node synchronization 132
nodedown event 177
nodeup event 177
non-recoverable database

backup and recovery 3

O
offline archived logs 34
on demand log archiving 51
online

archived logs 34
help, accessing 366

Open History File Scan API 245
ordering DB2 books 366
overflowlogpath database

configuration parameter 39

P
parallel recovery 61
parameters

syntax 203
partitioned database environments

transaction failure recovery
in 16

pending states 59
performance

recovery 60
point of consistency, catabase 11
printed books, ordering 366
privileges

backup 66
restore utility 88
roll-forward utility 121

protecting against disk failure 14
Prune History File API 253
PRUNE HISTORY/LOGFILE 231

R
RAID (Redundant Array of

Independent Disks) devices
description 14
level 1 (disk mirroring or

duplexing) 14
level 5 (data and parity striping

by sectors) 14
Read Log Without a Database

Connection API 256

READING DATA FROM DEVICE
(sqluvget) 339

recoverable databases 3
recovery

crash 11
damaged table spaces 12
database 95
dropped table 128
dropped tables, roll-forward

utility 128
history file 3
incremental 28
log file 3
objects 3
operating system restrictions 10
overview 3
parallel 61
performance 60
point-in-time 25
reducing logging 38
roll-forward 25
storage considerations 9
table space change history file 3
time required 7
to end of logs 25
two-phase commit protocol 16
user exit 323
version 24
with rolling forward 134
without roll forward 95

redefining table space containers,
restore utility 93

redirected restore 93
reducing impacts

media failure 14
transaction failure 16

reducing logging
Declared temporary tables 38
NOT LOGGED INITIALLY

parameter 38
Redundant Array of Independent

Disks (RAID)
reducing the impact of media

failure 14
registry variables

DB2LOADREC 130
relationships

between tables 10
RESTART DATABASE command 11
Restore database API 104
RESTORE DATABASE

command 95
restore utility

authorities and privileges
required to use 88

restore utility (continued)
overview 87
performance 87
redefining table space

containers 93
restoring to a new database 95
restoring to an existing

database 94
restrictions 89

restoring
data to a new database 95
data to an existing database 94
databases

incremental 28
rollforward recovery 25

earlier versions of DB2
databases 95

RETURN-CODE structure 354
REWIND TAPE command 232
roll-forward recovery

configuration file parameters
supporting 39

database 25
log management

considerations 45
log sequence 45
table space 25, 123

Rollforward Database API 145
ROLLFORWARD DATABASE

command 134
rollforward utility

authorities and privileges
required to use 121

load copy location file,
using 130

overview 119
recovering a dropped table 128
restrictions 121

rotating assignment 177
rules file 177

S
scalability 177
seed database 94, 95
SET TAPE POSITION 233
Set up Windows Failover

Utility 221
software disk arrays 14
Solaris Operating Environment

backup and restore support 10
SP frame 177
split mirror

as a backup image 170
as a standby database 169

split mirror handling 167

Index 389

SQL messages 207
SQLCODE

overview 207
SQLSTATE

overview 207
SQLU-LSN structure 273
sqluvdel - Delete Committed

Session 346
sqluvend - Unlink the Device and

Release its Resources 343
sqluvget - Reading Data from

Device 339
sqluvint - Initialize and Link to

Device 336
sqluvput - Writing Data to

Device 341
states

pending 59
storage

media failure 9
required for backup and

recovery 9
Sun Cluster 3.0, high

availability 192
suspended I/O to support

continuous availability 167
synchronization

database partition 132
node 132
recovery considerations 132

syntax diagrams
reading 203

T
table

relationships 10
table spaces

recovery 12
restoring 25
roll-forward recovery 25

tape backup 69, 72
Terminate Read Log Without a

Database Connection API 262
time

database recovery time 7
timestamps

conversion, client/server
environment 134

Tivoli Storage Manager (TSM)
backup restrictions 319
client setup 319
timeout problem resolution 319
using 319
with BACKUP DATABASE

command 319

Tivoli Storage Manager (TSM)
(continued)

with RESTORE DATABASE
command 319

transactions
blocking when log directory is

full 50
failure recovery

crashes 16
n the failed database partition

server 16
on active database partition

server 16
reducing the impact of

failure 11
troubleshooting

DB2 documentation search 374
online information 376

TSM archived images 209
tutorials 378
two-phase commit

protocol 16

U
UNLINK THE DEVICE AND

RELEASE ITS RESOURCES
(sqluvend) 343

Update History File API 250
UPDATE HISTORY FILE

command 234
user exit program

archive and retrieve
considerations 47

backup 9
calling format 323
error handling 323
for database recovery 323
logs 9
sample programs 323

user-defined events 177
userexit database configuration

parameter 39

V
variables

syntax 203
vendor products

backup and restore 327
DATA structure 353
DB2-INFO structure 347
DELETE COMMITTED

SESSION 346
description 327
INIT-INPUT structure 351
INIT-OUTPUT structure 353

vendor products (continued)
INITIALIZE AND LINK TO

DEVICE 336
operation 327
READING DATA FROM

DEVICE 339
RETURN-CODE structure 354
sqluvdel 346
sqluvend 343
sqluvget 339
sqluvint 336
sqluvput 341
UNLINK THE DEVICE 343
VENDOR-INFO structure 350
WRITING DATA TO

DEVICE 341
VENDOR-INFO structure 350
VERITAS Cluster Server 195

high availability 195
version levels

version recovery of the
database 24

W
warning messages

overview 207
Windows NT

failover
hot standby 183
mutual takeover 183
types 183

WRITING DATA TO DEVICE
(sqluvput) 341

X
XBSA (Backup Services APIs) 72

390 Data Recovery and High Availability Guide and Reference

Contacting IBM

In the United States, call one of the following numbers to contact IBM:
v 1-800-237-5511 for customer service
v 1-888-426-4343 to learn about available service options
v 1-800-IBM-4YOU (426-4968) for DB2 marketing and sales

In Canada, call one of the following numbers to contact IBM:
v 1-800-IBM-SERV (1-800-426-7378) for customer service
v 1-800-465-9600 to learn about available service options
v 1-800-IBM-4YOU (1-800-426-4968) for DB2 marketing and sales

To locate an IBM office in your country or region, check IBM’s Directory of
Worldwide Contacts on the web at www.ibm.com/planetwide

Product information

Information regarding DB2 Universal Database products is available by
telephone or by the World Wide Web at
www.ibm.com/software/data/db2/udb

This site contains the latest information on the technical library, ordering
books, client downloads, newsgroups, FixPaks, news, and links to web
resources.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.
v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the
IBM Worldwide page at www.ibm.com/planetwide

© Copyright IBM Corp. 2001, 2002 391

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-4831-00

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
IB

M
®

D
B

2
U

ni
ve

rs
al

D
at

ab
as

e™

D
at

a
R

ec
ov

er
y

an
d

H
ig

h
Av

ai
la

bi
lit

y
G

ui
de

an
d

R
ef

er
en

ce
Ve

rs
io

n
8

	Contents
	About This Book
	Who Should Use this Book
	How this Book is Structured

	Part 1. Data Recovery
	Chapter 1. Developing a Good Backup and Recovery Strategy
	Developing a Backup and Recovery Strategy
	Deciding How Often to Back Up
	Storage Considerations
	Keeping Related Data Together
	Using Different Operating Systems
	Crash Recovery
	Crash Recovery - Details
	Recovering Damaged Table Spaces
	Recovering Table Spaces in Recoverable Databases
	Recovering Table Spaces in Non-recoverable Databases

	Reducing the Impact of Media Failure
	Protecting Against Disk Failure

	Reducing the Impact of Transaction Failure
	Recovering from Transaction Failures in a Partitioned Database Environment
	Transaction Failure Recovery on an Active Database Partition Server
	Transaction Failure Recovery on the Failed Database Partition Server
	Identifying the Failed Database Partition Server

	Recovering from the Failure of a Database Partition Server
	Recovering Indoubt Transactions on the Host when DB2 Connect Has the DB2 Syncpoint Manager Configured
	Recovering Indoubt Transactions on the Host when DB2 Connect Does Not Use the DB2 Syncpoint Manager

	Disaster Recovery
	Version Recovery
	Rollforward Recovery
	Incremental Backup and Recovery
	Incremental Backup and Recovery - Details
	Restoring from Incremental Backup Images
	Limitations to Automatic Incremental Restore

	Understanding Recovery Logs
	Recovery Log Details
	Log Mirroring
	Reducing Logging with the NOT LOGGED INITIALLY Parameter
	Reducing Logging with Declared Temporary Tables

	Configuration Parameters for Database Logging
	Managing Log Files
	Managing Log Files with a User Exit Program
	Log File Allocation and Removal
	Blocking Transactions When the Log Directory File is Full
	On Demand Log Archive
	Using Raw Logs
	How to Prevent Losing Log Files

	Understanding the Recovery History File
	Recovery History File - Garbage Collection
	Garbage Collection

	Understanding Table Space States
	Enhancing Recovery Performance
	Enhancing Recovery Performance - Parallel Recovery
	Parallel Recovery

	Chapter 2. Database Backup
	Backup Overview
	Displaying Backup Information

	Privileges, Authorities, and Authorization Required to Use Backup
	Using Backup
	Backing Up to Tape
	Backing Up to Named Pipes
	BACKUP DATABASE
	db2Backup - Backup database
	Backup Sessions - CLP Examples
	Optimizing Backup Performance

	Chapter 3. Database Restore
	Restore Overview
	Optimizing Restore Performance

	Privileges, Authorities, and Authorization Required to Use Restore
	Using Restore
	Using Incremental Restore in a Test and Production Environment
	Redefining Table Space Containers During a Restore Operation (Redirected Restore)
	Restoring to an Existing Database
	Restoring to a New Database
	RESTORE DATABASE
	db2Restore - Restore database
	Restore Sessions - CLP Examples

	Chapter 4. Rollforward Recovery
	Rollforward Overview
	Privileges, Authorities, and Authorization Required to Use Rollforward
	Using Rollforward
	Rolling Forward Changes in a Table Space
	Recovering a Dropped Table
	Using the Load Copy Location File
	Synchronizing Clocks in a Partitioned Database System
	Client/Server Timestamp Conversion
	ROLLFORWARD DATABASE
	db2Rollforward - Rollforward Database
	Rollforward Sessions - CLP Examples

	Part 2. High Availability
	Chapter 5. Introducing High Availability and Failover Support
	High Availability
	High Availability through Log Shipping
	High Availability through Online Split Mirror and Suspended I/O Support
	Online Split Mirror Handling
	Making a Clone Database
	Using a Split Mirror as a Standby Database
	Using a Split Mirror as a Backup Image

	Fault Monitor Facility for UNIX Based Systems
	db2fm - DB2 Fault Monitor

	Chapter 6. High Availability on AIX
	Chapter 7. High Availability on the Windows Operating System
	Chapter 8. High Availability in the Solaris Operating Environment
	High Availability in the Solaris Operating Environment
	High Availability on Sun Cluster 3.0
	High Availability with VERITAS Cluster Server

	Part 3. Appendixes
	Appendix A. How to Read the Syntax Diagrams
	Appendix B. Warning, Error and Completion Messages
	Appendix C. Additional DB2 Commands
	System Commands
	db2adutl - Work with TSM Archived Images
	db2ckbkp - Check Backup
	db2ckrst - Check Incremental Restore Image Sequence
	db2flsn - Find Log Sequence Number
	db2inidb - Initialize a Mirrored Database
	db2mscs - Set up Windows Failover Utility

	CLP Commands
	ARCHIVE LOG
	INITIALIZE TAPE
	LIST HISTORY
	PRUNE HISTORY/LOGFILE
	REWIND TAPE
	SET TAPE POSITION
	UPDATE HISTORY FILE

	Appendix D. Additional APIs and Associated Data Structures
	db2ArchiveLog - Archive Active Log API
	db2HistoryCloseScan - Close History File Scan
	db2HistoryGetEntry - Get Next History File Entry
	db2HistoryOpenScan - Open History File Scan
	db2HistoryUpdate - Update History File
	db2Prune - Prune History File
	db2ReadLogNoConn - Read Log Without a Database Connection
	db2ReadLogNoConnInit - Initialize Read Log Without a Database Connection
	db2ReadLogNoConnTerm - Terminate Read Log Without a Database Connection
	db2ReadLog - Asynchronous Read Log
	db2HistData
	SQLU-LSN

	Appendix E. Recovery Sample Program
	Sample Program with Embedded SQL (dbrecov.sqc)

	Appendix F. Tivoli Storage Manager
	Configuring a Tivoli Storage Manager Client
	Considerations for Using Tivoli Storage Manager

	Appendix G. User Exit for Database Recovery
	Sample User Exit Programs
	Calling Format
	Error Handling

	Appendix H. Backup and Restore APIs for Vendor Products
	Backup and Restore APIs for Vendor Products
	Operational Overview
	Number of Sessions
	Operation with No Errors, Warnings or Prompting
	PROMPTING Mode
	Device Characteristics
	If Error Conditions Are Returned to DB2
	Warning Conditions

	Operational Hints and Tips
	History File

	Invoking a Backup or a Restore Operation Using Vendor Products
	The Control Center
	The Command Line Processor (CLP)
	Application Programming Interface (API)

	sqluvint - Initialize and Link to Device
	sqluvget - Reading Data from Device
	sqluvput - Writing Data to Device
	sqluvend - Unlink the Device and Release its Resources
	sqluvdel - Delete Committed Session
	DB2-INFO
	VENDOR-INFO
	INIT-INPUT
	INIT-OUTPUT
	DATA
	RETURN-CODE

	Appendix I. DB2 Universal Database technical information
	Overview of DB2 Universal Database technical information
	Categories of DB2 technical information
	Core DB2 information
	Administration information
	Application development information
	Business intelligence information
	DB2 Connect information
	Getting started information
	Tutorial information
	Optional component information
	Release notes

	Printing DB2 books from PDF files
	Ordering printed DB2 books
	Accessing online help
	Finding topics by accessing the DB2 Information Center from a browser
	Finding product information by accessing the DB2 Information Center from the administration tools
	Viewing technical documentation online directly from the DB2 HTML Documentation CD
	Updating the HTML documentation installed on your machine
	Copying files from the DB2 HTML Documentation CD to a Web Server
	Troubleshooting DB2 documentation search with Netscape 4.x
	Searching the DB2 documentation
	Online DB2 troubleshooting information
	Accessibility
	Keyboard Input and Navigation
	Keyboard Input
	Keyboard Focus

	Accessible Display
	Font Settings
	Non-dependence on Color

	Alternative Alert Cues
	Compatibility with Assistive Technologies
	Accessible Documentation

	DB2 tutorials
	DB2 Information Center for topics

	Appendix J. Notices
	Trademarks

	Index
	Contacting IBM
	Product information

